
28/01/2019

1

CS/ENGRD 2110
SPRING 2019
Lecture 3: Fields, getters and setters, constructors, testing
http://courses.cs.cornell.edu/cs2110

1

CS2110 Announcements
2 Take course S/U?

OK with us. Check with your advisor/major. To get an S, you need to do
at least C– work. Do D+ work or less, you get a U.
HW1 due on 29 January. See Piazza note @22.

A0 due on 30 January. See Piazza note @23.

Please don’t email us about prelim conflicts! We’ll tell you at the
appropriate time how we handle them.

If you are new to the course and want to submit a quiz or assignment
that is past due, talk to or email you TA and ask for an extension.

Profs eat lunch with 7 students. Sign up on pinned Piazza note @8 to
take part.

Do a recitation in groups of 1, 2, 3 in the same recitation section.
Doesn’t make sense to do it with someone not in same section.

CS2110 Grading HW1: Comments from you
3

We started grading. The 15 that I looked at got it right, although a few
could be better worded, and we say that in the feedback.

These tasks seemed trivial, but after completion I see their importance.
These activities helped develop a solid foundation of good programing
and understanding algorithms.
I thought the two videos were very helpful. I was definitely confused
about how to answer the question at the end of class. It made me realize
how important semantics and the choice of words is. It has made me
more careful about my choice of words .
… the chef/recipe analogy was really helpful …

Interesting information/exercise. I programmed java before but it is
quite helpful to abstract away the details of programming to yield what
is "really" going on, and feel this will be especially helpful as we move
on to more complex programs/topics.

Assignment A1
4

Write a class to maintain information about PhDs ---e.g. their
advisor(s) and date of PhD. Pay attention today, you will do
exactly what I do in creating and testing a class!
Objectives in brief:
¨ Get used to Eclipse and writing a simple Java class
¨ Learn conventions for Javadoc specs, formatting code (e.g.

indentation), class invariants, method preconditions
¨ Learn about and use JUnit testing
Important: READ CAREFULLY, including Step 9, which reviews what
the assignment is graded on.
Groups. You can do A1 with 1 other person. FORM YOUR GROUP
EARLY! Use pinned Piazza Note @5 to search for partner!

Homework (not to be handed in)
5

1. Course website will contain classes Time and TimeTest. The
body of the one-parameter constructor is not written. Write it.
The one-parameter constructor is not tested in TimeTest. Write a
procedure to test it.
2. Visit course website, click on Resources and then on Code Style
Guidelines. Study

1. Naming conventions
3.3 Class invariant

4. Code organization
4.1 Placement of field declarations

5. Public/private access modifiers
3. Look at slides for next lecture; bring them to next lecture

How to learn Java syntax
6

Question on the course Piazza:
I worked on recitation 1 in the recitation section today, but I am
still confused as to when/when not to add semicolons. Is there a
general rule regarding semicolon placement in java?
Answer:Any basic statement (one that doesn’t include other
statement) require ; at end, e.g.

assignment
return
procedure call

28/01/2019

2

How to learn Java syntax
7

When you have a question on syntax of statements, there are two
ways to find a suitable answer:

1. Try it in Eclipse —keep trying different things until
something works. HORRIBLE. You waste your time and
learn nothing.

2. Look up the statement in JavaHyperText! Wonderful! Look
up a statement twice and you will know it forever.

Difference between class and object

8

A blueprint, design, plan
A class

A house built from the blueprint
An object

Can create many objects from
the same plan (class). Usually,
not all exactly the same.

Overview
9

¨ An object can contain variables as well as methods.
Variable in an object is called a field.

¨ Declare fields in the class definition. Generally, make fields
private so they can’t be seen from outside the class.

¨ May add getter methods (functions) and setter methods
(procedures) to allow access to some or all fields.

¨ Use a new kind of method, the constructor, to initialize fields of
a new object during evaluation of a new-expression.

¨ Create a JUnit Testing Class to save a suite of test cases, run
them when necessary.

References in JavaHyperText entries
10

Look at these JavaHyperText entries:
Class definition: classes

Declaration of fields: field
Getter/setter methods: getter setter
Constructors: constructor

Class String: toString
JUnit Testing Class: Junit

Overloading method names: overload
Overriding method names: override

class Time
11

Object contains the time of day in hours and minutes.
Methods in object refer to fields in object.
Could have an array of such objects to list the times at which
classes start at Cornell.

With variables t1 and t2 below,
t1.getHour() is 8

t2.getHour() is 9
t2.toString() is “09:05”

Time@150
Timehr 8

min 0
getHour()
getMin()
toString()

Time@fa8
Timehr 9

min getHour()
getMin()
toString()

5t1 Time@150

t2 Time@fa8

Class Time
12

/** An instance maintains a time of day */
public class Time {

/** hour of the day, in 0..23. */

private int hr;
/** minute of the hour, in 0..59. */
private int min;

Time@fa8
Timehr 9

min 5

Access modifier private:
can’t see field from outside class
Software engineering principle:
make fields private, unless there
is a real reason to make public

28/01/2019

3

Class Time
13

/** An instance maintains a time of day */

public class Time {
/** hour of the day, in 0..23. */

private int hr;
/** minute of the hour, in 0..59. */
private int min;

Time@fa8
Timehr 9

min 5

Software engineering principle: Always
write a clear, precise class invariant.

Every method call starts with class inv
true and should end with class inv true.

Frequent reference to class inv can
prevent mistakes.

Class invariant:
collection of defs of
variables and
constraints on them
(blue stuff)

Getter methods (functions)
14

public class Time {
/** Hour of the day, in 0..23. */
private int hr;
/** Minute of the hour, in 0..59 */
private intmin;
/** Return hour of the day */
public int getHour() {
return hr;

}

/** Return minute of the hour */
public int getMin() {
returnmin;

}
}

Time@fa8
Timehr 9

min 5 getHour()
getMin()

Spec goes before method.
It’s a Javadoc comment
—starts with /**

A little about type (class) String
15

public class Time {
private int hr;
private int min;
/** = a represention of this time, e.g. 09:05*/
public String toString() {

return prepend(hr) + ":" + prepend(min);
}
/** Return i with preceding 0, if

necessary, to make two chars. */
private String prepend(int i) {

if (i > 9 || i < 0) return "" + i;
return "0" + i;

}
…

Java: double
quotes for

String literals

Java: + is
String

catenation

“helper” function is private, so it
can’t be seen outside class

Catenate with empty String to
change any value to a String

Concatenate or catenate?
16

I never concatenate strings;

I just catenate those little things.
Of syllables few,

I'm a man through and through.
Shorter words? My heart joyfully sings!

Setter methods (procedures)
17

/** An instance maintains a time of day */
public class Time {
private int hr; // in 0..23
private intmin; // in 0..59

}

Time@fa8
Timehr 9

min 5 getHour()
getMin()
toString()

No way to store
value in a field!
We can add a
“setter method”

/** Change this object’s hour to h.
* Precondition: h in 0..23. */
public void setHour(int h) {

hr= h;
}

setHour(int)setHour(int) is now in the object

Setter methods (procedures)
18

/** An instance maintains a time of day */
public class Time {
private int hr;
private intmin;

}

Time@fa8
Timehr 9

min 5

/** Change this object’s hour to h.
* Precondition: h in 0..23. */
public void setHour(int h) {

hr= h;
}

getHour()
getMin()
toString()setHour(int)

Do not say
“set field hr to h”

User does not know
there is a field. All
user knows is that

Time maintains hours
and minutes. Later,
we show an imple-

mentation that
doesn’t have field h

but “behavior” is
the same

28/01/2019

4

Test using a JUnit testing class
19

In Eclipse, use menu item File à New à JUnit Test Case to
create a class that looks like this:
import static org.junit.Assert.*;
import org.junit.Test;

public class TimeTest {
@Test
public void test() {

fail("Not yet implemented");
}

}

Select TimeTest in Package
Explorer.

Use menu item Run à Run.

Procedure test is called, and
the call fail(…) causes
execution to fail:

Test using a JUnit testing class
20

…

public class TimeTest {
@Test
public void test() {

Time t1= new Time();
assertEquals(0, t1.getHour());
assertEquals(0, t1.getMin();
assertEquals("00:00", t1.toString());

}
}

Write and save a suite of
“test cases” in TimeTest, to
test that all methods in
Time are correct

Store new Time object in t1.

Give green light if expected value equals
computed value, red light if not:

assertEquals(expected value, computed value);

Test setter method in JUnit testing class
21

public class TimeTest {

…

@Test
public void testSetters() {

Time t1= new Time();
t1.setHour(21);
assertEquals(21, t1.getHour());

}
}

Time@fa8
Timehr 9

min 5
getHour()
getMin()
toString()setHour(int)

TimeTest can have several
test methods, each
preceded by @Test.

All are called when menu
item Runà Run is selected

Constructors —new kind of method
22

public class C {
private int a;
private int b;
private int c;
private int d;
private int e;

}

C has lots of fields. Initializing an
object can be a pain —assuming
there are suitable setter methods

C var= new C();
var.setA(2);
var.setB(20);
var.setC(35);
var.setD(-15);
var.setE(150);

But first, must write a new method
called a constructor

C var= new C(2, 20, 35, -15, 150);

Easier way to initialize the fields, in
the new-expression itself. Use:

Constructors —new kind of method
23

Time@fa8
Timehr 9 min 5

getHour() getMin()
toString() setHour(int)

Time(int, int)

/** An object maintains a time of day */
public class Time {
private int hr; //hour of day, 0..23
private int min; // minute of hour, 0..59
/** Constructor: an instance with

h hours and m minutes.
*/

public Time(int h, int m) {
hr= h;
min= m;

}

Purpose of constructor:
Initialize fields of a
new object so that its
class invariant is true

No return type
or void

Name of constructor
is the class name

Memorize!

Precondition: h in 0..23, m in 0..59 Need precondition

Revisit the new-expression
24

Time@fa8
Timehr 0 min 0

getHour() getMin()
toString() setHour(int)

Time(int, int)

Syntax of new-expression: new <constructor-call>

If you do not declare a constructor,
Java puts in this one:
public <class-name> () { }

Evaluation of new-expression:
1. Create a new object of class, with default values in fields

Example: newTime(9, 5)

2. Execute the constructor-call

9 5

3. Give as value of the expression
the name of the new object

Time@fa8

28/01/2019

5

How to test a constructor
25

public class TimeTest {
@Test
public void testConstructor1() {

Time t1= new Time(9, 5);
assertEquals(9, t1.getHour());
assertEquals(5, t1.getMin();

}
…

}

Create an object using the constructor. Then check that all
fields are properly initialized —even those that are not
given values in the constructor call

Note: This also checks
the getter methods! No
need to check them
separately.

But, main purpose:
check constructor

A second constructor
26

Time@fa8
Timehr 9 min 5

getHour() getMin()
toString() setHour(int)
Time(int, int) Time (int)

/** An object maintains a time of day */
public class Time {
private int hr; //hour of day, 0..23
private intmin; // minute of hour, 0..59
/** Constructor: an instance with

m minutes.
Precondition: m in 0..(23*60 +59) */

public Time(intm) {
hr= m/60; min= m%60;
??? What do we put here ???

}
…

Time is overloaded: 2
constructors! Have
different parameter
types. Constructor call
determines which one
is called

new Time(9, 5)
new Time(125)

Method specs should not mention fields
27

public class Time {
private int hr;
private int min;
/** return hour of day*/
public int getHour() {
return h;

}

/** return hour of day*/
public int getHour() {

returnmin / 60;
}

Time@fa8
Timehr 9

min 5
getHour()
getMin()
toString()setHour(int)

public class Time {
/** min, in 0..23*60+59. */
private int min;

Time@fa8
Timemin 545

getHour() getMin()
toString() setHour(int)

Specs of methods stay the same.
Implementations, including fields, change!

Decide
to change
implemen

-tation

