
Name: NetID:

Prelim 2 Solution

CS 2110, 24 April 2018, 7:30 PM

1 2 3 4 5 6 7 Total
Question Name Short

answer

Heaps Tree Collections Sorting Graph

Max 1 16 10 20 11 18 24 100

Score

Grader

The exam is closed book and closed notes. Do not begin until instructed.

You have 90 minutes. Good luck!

Write your name and CornellNetID, legibly, at the top of every page! There are 6 questions

on 8 numbered pages, front and back. Check that you have all the pages. When you hand in

your exam, make sure your pages are still stapled together. If not, please use our stapler to

reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might want

to write code on scrap paper first and then copy it to the exam so that we can make sense of

what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incorrect.

You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages that

must be printed for the exam. In others, code has been obfuscated to make the problem more

di�cult. This does not mean that it’s good style.

Academic Integrity Statement: I pledge that I have neither given nor received any unau-

thorized aid on this exam. I will not talk about the exam with anyone in this course who has

not yet taken Prelim 2.

(signature)

1. Name (1 point)

Write your name and NetID, legibly, at the top of every page of this exam.

1 of 8

Name: NetID:

2. Short Answer (16 points)

(a) True / False (8 points) Circle T or F in the table below.

(a) T F All search algorithms take O(n2
) time in the worst case. False. It’s easy to

write one that takes more.

(b) T F If a class implements Iterator, it must also implement Iterable. False.

Iterator is typically implemented by a private inner class, not the same class.

(c) T F It is best to store sparse graphs in an adjacency matrix and dense graphs in

an adjacency list. False. Storing a sparse graph in an adjacency matrix

wastes space and makes processing the neighbors of a node take more time.

(d) T F ArrayList<Node> is not a subtype of ArrayList<Object> even if Node

extends Object. True. See a line in the entry for ”generics” in

JavaHyperText.

(e) T F An algorithm’s time complexity can be both O(n3
) and O(n2

). True. Any

algorithm that is O(n2
) is also O(n3

).

(f) T F ArrayList<double> myList= new ArrayList<>(); is valid Java. False.

Type parameters cannot be primitive types.

(g) T F Consider an undirected graph with set of edges E and set of vertices V . It is

a tree i↵ |E| = |V |� 1. False. There must also be no cycles.

(h) T F Any planar graph can be topologically sorted. False. The graph must be

acyclic.

(b) GUI (3 points) What three steps are required to listen to an event in a Java GUI?

1. Have some class C implement an interface IN that is connected with the event.

2. In class C, override methods required by interface IN; these methods are generally called when

the event happens.

3. Register an object of class C as a listener for the event. That object’s methods will be called

when event happens.

(c) Red-Black Trees (5 points) What is the full red-black tree invariant?

1. The tree is a binary tree.

2. Every node is either red or black.

3. The root is black.

4. If a node is red, then its (non-null) children are black.

5. For each node, every path to a descendant null node contains the same number of black nodes.

2 of 8

Name: NetID:

3. Heaps (10 Points)

(a) 6 points State whether each tree below is a valid max-heap, in which the priorities are the

values. If it is not, state which invariant is unsatisfied. No partial credit given.

15

13

12 8

11

10

valid max-heap

22

14

7 1

17

15

invalid: completeness

invariant unsatisfied

19

12

11 14

15

9 8

invalid: heap

invariant unsatisfied

(b) 4 points The int array b below corresponds to a min-heap of integers in which the values are

the priorities. Suppose the heap has size 7 and b[0..6] contains these 7 integers.

b = [3 8 4 9 11 5 10]

Draw the state of b after calling b.poll(). Give your solution as an array. (Points deducted if you

did not write your solution as an array.)

[4 8 5 9 11 10]

4

8

9 11

5

10

4. Trees (20 Points)

(a) 2 points What is the worst case time complexity for determining if a value is contained in:

• a Red Black Tree with n nodes? O(log n)

• a Binary Search Tree with n nodes? O(n)

(b) 4 points
Write down the order in which this tree’s nodes are printed

in preorder, inorder, and postorder traversals.

Preorder: A Y M B W J I

Inorder: M B Y A J W I

Postorder: B M Y J I W A

B

M J I

Y W

A

3 of 8

Name: NetID:

(c) 4 points Draw the binary search tree that results from inserting the following nodes, one by

one, into an initially empty tree: 7, 4, 5, 1, 9, 8. Two pts. o↵ for a mistake; 0 if your answer does

not resemble the correct tree.

7

/ \

4 9

/ \ /

1 5 8

(d) 10 points
Class Ppl (for People), to the right, represents a person

and their kids. In the tree to the right, Anne is the first

generation. Her kids are Bob, Con, and Dan; they are

Anne’s generation 2. Bob has 1 kid, Eve, and Dan has 2

kids, Frank and Grace. Eve, Frank, and Grace are Anne’s

generation 3. Etcetera.

Complete method maxGen below.

public class Ppl {

private String name;

private Set<Ppl> kids;

...

}

Anne

/ | \

Bob Con Dan

| | \

Eve Frank Grace

/** Return the maximum number of generations that this Ppl can trace

* forward through their kids.

*

* For example, in the tree to the right above,

* Anne.maxGen() = 3 // Tree contains some of Anne's kid's kids

* Bob.maxGen() = 2 // Bob's Tree contains Bob's kid

* Con.maxGen() = 1 // Con's tree contains only Con

* Frank.maxGen() = 1 // Frank's tree contains only Frank */

public int maxGen() {

int mGen= 1;

for (Ppl s : kids) {

mGen= Math.max(mGen, 1 + s.maxGen());

}

return mGen;

}

4 of 8

Name: NetID:

5. Collections and Interface (11 Points)

Class Multiset〈E〉, declared below, implements a multiset —like a set but elements can be in

it more than once. Implement methods contains, add, and remove. Assume all other methods

required by Collection have already been implemented. Note: interpreting size as the number of

entries in the map instead of the number elements in the multiset is a mistake. Suppose I gave you

a bag containing ten dimes. Would you say its size is 1 or 10?

/** An instance is a multiset --an unordered collection in which there can be

* multiple instances of the same element. */

public class Multiset<E> implements Collection<E> {

private int size; // Number of elements in this multiset

private Map<E, Integer> elemNum; // Mapping of element in this multiset to

// its number of occurrences (which is > 0)

/** Constructor: An empty multiset. */

public Multiset() { elemNum= new TreeMap<E, Integer>(); }

/** Return whether this multiset contains ob. */ (1 point)

public boolean contains(Object ob) {

elemNum.get(ob) != null;

}

/** Add e to multiset. Return whether elemNum was modified in any way. */ (4 points)

public boolean add(E e) {

if (contains(e)) {. OR Integer s= elemNum.get(e);

elemNum.put(e, map.get(e)+1); if (s == null) elemNum.put(e, 1);

} else { else elemNum.put(e, s+1);

elemNum.put(e, 1); size++;

}. return true;

size++;

return true;

}

/** Remove ob from multiset if present. Return whether it was removed.*/ (6 points)

public boolean remove(Object ob) {

Integer s= elemNum.get(ob);

if (s == null) return false;

if (s == 1) elemNum.remove(ob);

else elemNum.put((E)ob, s-1);

size--;

return true;

}

}

5 of 8

Name: NetID:

6. Sorting (18 Points)

(a) 4 points. Consider the following class Author. Order the list of Author in decreasing order

of booksWritten. If two authors have written the same number of books, order by decreasing num-

ber of copies sold. Complete method compareTo(...); it must implement the standard compareTo

specification.

/** An instance represents a comparable author object*/

public class Author implements Comparable<Author> {

private String name;

private int booksWritten;

private int copiesSold;// total number of copies of all the books sold.

...

/** Compare this object with ob for order. */

@Override public int compareTo(Author ob) { // there are other solutions

if (ob.booksWritten == booksWritten)

return ob.copiesSold - copiesSold;

return ob.booksWritten - booksWritten;

}

}

(b) 6 points. Using method compareTo(), complete method selectionSort(), below. That is, com-

plete the comment that begins the body of the for-loop as a high-level statement saying what is

done to ensure that the loop invariant remains true. (2 points) Then implement the high-level

statement. (4 points)

We deducted points for an inner loop that swapped b[k] and b[j] many times instead of performing

one swap after the index of the min value is found. No regrade request on this will get points back.

public void selectionSort(Author[] b) {

// inv: b[0..i-1] is sorted and b[0..i-1] <= b[i..] (using compareTo)

for (int i= 0; i < b.length; i= i+1) {

// Swap b[i] with the minimum of b[i..]

int k= i;

// inv: b[k] is min of b[i..j-1]

for (int j= i+1; j < b.length; j= j+1) {

if (b[k].compareTo(b[j]) < 0) k= j;

}

// Swap b[i] and b[k]

int t= b[i]; b[i]= b[k]; b[k]= t;

}

}

(c) 2 points. What is the worse-case time and expected time of selection sort?

O(n2
), O(n2

)

(d) 6 points State the tightest expected time complexity of quicksort, mergesort, and insertion-

sort. For quicksort, assume it is the version that reduces the space as much as possible.

quicksort: O(n log(n)) mergesort: O(n log(n)) insertionsort: O(n2
)

6 of 8

booksWritten - ob.booksWritten would sort in ascending order,
so we reverse for descending order

this should probably be b[j].compareTo(b[k]) < 0.
 Why? we want to get the earlier one, and
 b[k].compareTo(b[j]) returns 1 if k should be after j.

Should be “Author t= …”

Name: NetID:

7. Graphs (24 Points)

A coloring of a graph is an assignment of colors to the nodes of a graph. An edge is properly colored

if the two nodes it connects have di↵erent colors. A proper coloring is a coloring in which all edges

are properly colored.

(a) 3 points Which of the following are proper colorings?

red

blue

gray

blue

yes

red

blue

red

no

red

red

gray

blue

gray

yes

(c) 4 points The chromatic number of a graph G, written as (�G), is the minimum number of

colors needed to properly color the graph. For each of the graphs below, write down �G and properly

color the graph using � colors. To assign a color to a node, write the name of the color next to the

node, as in part (a).

�G = 3 �G = 3

(d) 4 points Draw a graph whose chromatic number is 2 (there exists a proper coloring using

only two colors). Use at least 4 nodes.

The graph must be a bipartite graph with at least four nodes.

For example:

7 of 8

Name: NetID:

Complete method isProper, below. The graph is undirected and connected. Starting with all

nodes unchecked and u some node of the graph, the call isProper(u) will determine whether the

graph is properly colored.

Use the English phrases n was checked and check n to test whether a node n has already been

traversed and to mark it as checked, respectively. Use n.color for the color of node n. Use a loop

for each neighbor m of n.

The precondition of any call implies that n should be checked only if its edges are properly colored.

That is the reason for the first loop over the neighbors.

/** Let E be the set of edges that are reachable along unchecked paths from n.

* Return true iff all edges in E are properly colored.

* Precondition: all edges leaving a checked node are properly colored.

* Precondition: n is unchecked. */

static public boolean isProper(Node n) {

for each neighbor m of n {

if (n.color == m.color) return false;

}

check n;

for each neighbor m of n {

if (m is unchecked && !isProper(m)) return false;

}

return true;

}

(f) 1 point. Method isProper traverses the graphs in some fashion. It is similar to one of the

following. Circle the one to which it is similar.

kruskal. prim. shortest path. dfs. bfs. The answer is dfs.

(g) 5 points. Two parts of the invariant of the shortest path algorithm are:

• For f in the frontier set, d[f] is the length of the shortest path to f that consists of red nodes

except for f.

• There are no edges from the settled set to the far-o↵ set.

State (1) the third part of the invariant and (2) the theorem that is proved about the invariant.

(1) For each node u in the settled set, d[u] is the length of the shortest path from the start node to

node u.

(2) For f in the frontier set with minimum d-value (over nodes in the frontier set), d[f] is indeed the

length of the shortest path from the start node to f.

8 of 8

