
Name: NetID:

Prelim 1. Solution

CS 2110, 14 March 2017, 7:30 PM

1 2 3 4 5 Total
Question Name Short

answer
OO Recursion Loop

invariants
Max 1 36 33 15 15 100
Score
Grader

1. Name (1 point)

Write your name and NetID at the top of every page of this exam.

2. Short Answer (36 points.)

(a) 5 points. Below are five expressions. To the right of each, write its value.

1. ’c’ == ’b’ + 1 true

2. ’5’ - ’0’ 5

3. (double) (double) (int) 5.2 == 5 true

4. ((Double)(Object)(3.2)).equals(3.2) true

5. k == 0 || 5/k != 8 [note: k is of type int] true

(b) 4 points. Consider classes A and B de-
clared to the right. Will these classes compile?
If not, give as many reasons as possible for why
they won’t compile.

(1) Since A is abstract, the expression newA()
is illegal. (2) Since m() is abstract, class B is
illegal because it does not override m.

public abstract class A {

public abstract void m();

}

public class B extends A {

public void p() {

A b= new A();

}

}

1 of 5

Name: NetID:

(c) 5 points. Write Java code to: Assign array element b[h] to variable k, but if it throws
an ArrayIndexOutOfBoundsException, store 0 in k. Do not use an if-statement, conditional
expression, switch statement, or loop. Assume that all variables have already been defined.

try {k= b[h];

} catch (ArrayIndexOutOfBoundsException e) {

k= 0;

}

(d) 6 points. Put a check mark before each of the following sentences that is correct and an
X before each that is incorrect.

1. An abstract class cannot have a constructor because it cannot be instantiated. false

2. A class can extend only one interface. false

3. Methods in an interface are necessarily abstract, but you can make them public or private.
false. They have to be public

4. If a subclass implements an interface, its superclass cannot implement that interface. false

5. A local variable declared with type int is automatically initialized to contain 0. false. local
variables are uninitialized.

6. Every constructor must start with a call on a super-class constructor. false. It could start
with ”this(...);”

(e) 12 points. To the right is class CC and
its subclass CB. Below is method main of class
CC —it belongs in class CC.

Execute a call on method main. Write the value
that is printed by each println statement to the
right of that println statement.

Printed are the ints 3 10 6 4 10 15

public static void main(String[] p) {

CC a= new CC();

System.out.println(a.x);

System.out.println(a.y);

System.out.println(a.m(a));

CB b= new CB();

System.out.println(b.x);

System.out.println(b.y);

System.out.println(b.m(b));

}

public class CC {

public int x= 2;

public int y= 10;

public CC(int p) { x= p; }

public CC() { this(3); }

public int m(CC c) {

return c instanceof CB ? 5 : 6;

}

}

public class CB extends CC {

public CB() { super(4); }

public @Override int m(CC c) {

return y + super.m(c);

}

}

2 of 5

Name: NetID:

(f) 4 points. Suppose you have an abstract class A and its only components are public abstract
methods. You would like a class B to extend A, but B already extends a class and it can extend
only one. How can you rewrite abstract class A to solve this problem?
Make A an interface.

3. Object-Oriented Programming (33 points)

(a) 5 points
To the right are classes H1 and H2. Method
p() is not overridden in class H2.

Modify class H2 so that a variable will con-
tain the number of times during execution
that method p() is called as a method of
any object of class H2 (instead of as an
object of class H1 only).

Your modifications should consist of insert-
ing a declaration in class H2 and overriding
method p.

public class H1 {

public void p() { ... }

}

public class H2 extends H1 {

// no. times p() called as a component

// of an object of class H2

public static int q;

public void p() {

super.p(); q= q+1;

}

...

}

(b) 10 points Below are two class declarations. Complete the bodies of the constructor and
function toString in class Outhouse. Be careful; pay attention to access modifiers.

public class Outhouse

extends Building {

private int numb; // number of seats

/** Constructor: instance at address

* ad with s seats */

public Outhouse(String ad, int s) {

super(ad);

numb= s;

}

/** Return the building’s address, a

* space, and number of seats. */

public String toString() {

return super.toString() +

" " + numb;

}

}

public class Building {

private String address;

/** A building at address ad. */

public Building(String ad) {

address= ad;

}

/** Return this building’s address */

public String toString() {

return address;

}

}

3 of 5

Name: NetID:

(c) 5 points Complete the body of method equals, which belongs in class Outhouse.:

/** Return true iff ob is an Outhouse and

* ob has the same number of seats as this Outhouse. */

public @Override boolean equals(Object ob) {

if (!(ob instanceof Outhouse)) return false;

return numb == (((Outhouse)ob).numb);

}

(d) 5 points Write down the steps in executing a method call m(args) .
1. Push a frame for the call onto the call stack.
2. Assign values of arguments to the parameters.
3. Execute the method body.
4. Pop frame for call from call stack; If this is a function push return value onto call stack.

(e) 8 points
Consider the interface and class declara-
tions given below. Next to each piece of
Java code in the righthand column, write
whether it produces no error, a run-time
error, or a compile-time error. (Assume
that each piece is independent of the others.)

Hint: It will help to draw objects of the
classes.

interface J1 {}

interface J2 {}

interface J3 extends J1 {}

class D1 implements J2 {}

class D2 implements J2 {}

class D3 implements J3 {}

class D4 extends D2 implements J1 {}

(a) J2 a= new J2(); syntax –compiletime
(b) J2 b= new D2(); no error
(c) D3 c= new D4(); syntax –compiletime
(d) D2 d= new D4(); no error
(e) D4 e= new D3(); syntax –compiletime
(f) D4 f= (D4)(new D2()); semantics –runtime

(g) J2 g1= new D2(); no error
D4 g2= new D4(); no error
g2= g1; syntax –compiletime

(h) J1 h1= new D4(); no error
J2 h2= new D2(); no error
h2= h1; syntax –compiletime

4. Recursion (15 Points)

(a) Write the body of recursive function nf, whose specification and header appear below. Do
not use loops. Use only recursion.

/* Return the number of times b[k] appears in a row at the beginning of b[k..]

* Precondition: 0 <= k < b.length.

* Examples: For b containing [2, 2, 2, 3, 2, 6],

* nf(b, 0) = 3 and nf(b, 2) = 1. */

public static int nf(int[] b, int k) {

if (k == b.length-1) return 1;

if (b[k] != b[k+1]) return 1;

return 1 + nf(b, k+1); }

(b) Below is function putBlank. It is complete except for the base-case if-condition . Circle all
possible expressions from the list below that could be used for the base-case if-condition.

4 of 5

Name: NetID:

1. s.length() < 2 no
2. s.length() ≤ 2 yes
3. s.length() == 2 no
4. Integer.parseInt(s) < 100 yes
5. s.length() == 0 no

/** Return s formatted by inserting a blank before every second digit.
* E.g. ”1000” is formatted as ”10 00”, ”56” is ”56”, and ”1234567” is ”1 23 45 67”.
* Precondition: s is a non-signed integer and the leftmost digit is not 0. **/

public String putBlank(String s) {
if (base-case if-condition) return s;
return putBlank(s.substring(0,s.length()-2)) + ’ ’ + s.substring(s.length()-2);

}

5. Loop Invariants (15 points)

(a) 2 points State the formula for the number of values in array segment b[h..k − 1]. k − h

(b) 13 points Consider the following precondition, invariant, and postcondition. The post-
condition has two alternatives —either section b[0..h] or section b[j + 1..k] is empty (the other
one might be, but it is not necessary).

xbPrecondition:

0 j n

??

xbInvariant:

0 h j k n

≥ x? ?≤ x

xbPostcondition:

0 j k n

≥ x≤ x ?

xbOR

0 h j n

≥ x? ≤ x

Write a loop with initialization that uses the invariant given above to implement the comment
given below. Thus, the loop should continue as long as both ? sections are non-empty. Assume
that b, j, and n are already initialized. Identifier x can’t be used in the program; it just stands for
the value in b[j]. Don’t declare variables, but do assign appropriate values to h and k wherever
necessary. To swap b[i] and b[j], just say, ”Swap b[i] and b[j].” Your grade depends only on how
well you use the four loopy questions to write the code.

// Given the Precondition as shown above, swap values of array

// segment b[0..n] so that the Postcondition holds.

h= j-1; k= n;

while (0 <= h && j < k) {

if (b[h] <= b[j]) h= h-1;

else {Swap b[h] and b[k]; k= k-1;}

}

5 of 5

