
CS2110, Spring 2019. Preparing for Prelim 1

Prelim: 5:30-7:00 Tuesday, 12 March
For students whose Cornell netid begins with two letters in the range

km..zz

Prelim: 7:30-9:00 Tuesday, 12 March
For students whose Cornell netid begins with two letters in the range

aa.kk

The course webpage says what to do if you cannot make the assigned time, for whatever reason.
READ THE INSTRUCTIONS ON

 http://www.cs.cornell.edu/courses/CS2110/2019sp/exams.html

If you can take the prelim at the assigned time, you don’t have to do anything but study and show
up.

Review session: Sunday, 10 March, 1:00–3:00. Kimball B11

This handout explains what you have to know for the prelim 1. The course website contains sev-
eral previous CS2110 prelims. To prepare for the prelim, you can (1) Practice writing Java pro-
grams/methods in Eclipse, (2) Read the JavaHyperText, (3) Memorize definitions, principles, (4)
Study past prelims, on the course website, and (5) Do what is suggested in the JavaHyperText
entry “study/work habits”.

In looking at past prelims, if you see a question that is outside the scope of the prelim as defined
below, then skip that question. Before asking on the Piazza “is this topic covered on the prelim?”
look through this two-page document. If you don’t find the answer here, then ask.

Prelim 1 covers material all material in lectures/recitations through Thursday, 28 Feb. Here is
more detail:

1. Java strong typing. Everything has to be declared before it can be used. The primitive types
int, double, char, boolean (know the basic operations on them). The corresponding wrapper
classes Integer, Double, Character, Boolean. You don’t have to know the detailed methods in
each wrapper class, but know the two reasons for having wrapper classes (be able to treat a primi-
tive-type value as an object; provide useful static fields and methods). Understand casting be-
tween numeric types and the fact that char is a numeric type. Autoboxing and unboxing.

2. OO. This is a big one. Master the following:
(a) Declaration of a variable
(b) Declaration of a class and subclass
(c) What fields/methods a subclass object has
(d) The class invariant
(e) Access modifiers public and private
(f) Getter/setter methods
(g) Declarations of functions and procedures
(h) What the name of an object is: Foo@...
(i) Evaluation of a new-expression
(j) Value null
(k) Static versus non-static
(l) Constructors: purpose. Principle that su-

perclass fields are initialized first. What

the first statement in a constructor body
must be. What Java inserts in a class if
there is no constructor.

(m) Overriding methods
(n) Overloading method names
(o) Class Object and the class hierarchy.

What Object.toString() and Object.equals
(Object) return.

(p) The uses of this and super: fields of this,
calling other constructors of this class,
calling constructors of super class, call-
ing the superclass’s implementation of a
method

(q) Casting among class types —downcasting

CS2110, Spring 2019. Preparing for Prelim 1

and upcasting; the latter can be done au-
tomatically.

(r) Type of a variable v and its use in deter-
mining, say, whether v.m(…) is syntacti-
cally legal. Compile-time reference rule.

(s) Reason for making a class abstract; rea-
son for making a method in an abstract
class abstract.

(t) Four kinds of variable in Java: field, class
variable (static), parameter, local variable

(u) Use of arrays (note: an array is an object):
declaration of 1-2 dimensional arrays,
length field, how one references an ele-
ment (e.g. b[i]). Array initializers. Be able
to write methods that use arrays, using
appropriate syntax.

(v) Simple generic types and their use —e.g.
ArrayList<JFrame>, LinkedList<Integer>
Java type-checking rules for calling a
method that expects a generic type for
one of its arguments.

(w) Interface declaration and implementing
an interface —what that means. Casting
with interfaces.

(x) The Java Collections classes. Basic
knowledge of structure —as discussed in
recitation.

(y) Knowledge of interface Comparable and
its abstract method.

(z) Exception handling: class Throwable;
how to throw an exception; the try state-
ment, with its try-block and catch-blocks.

3. Class String. You may be asked to write code that uses class String. Know methods charAt, indexOf,
lastIndexOf, contains, substring, length. You are welcome to use other methods too, but we’ll test on this
subset.

4. Recursion. Know how to write a recursive function. Know the difference between how recursive calls
are executed (in terms of placing a frame for a call on the call stack, etc.) and how one understands a re-
cursive function (Understand the body in terms of a recursive call doing what the specification says, not
how it gets executed.). Know the steps in executing a method call and be able to execute them yourself,
by hand.

5. Linked lists. NOT ON PRELIM 1

6. Loop invariants. Understand a loop in terms of a loop invariant and the four loopy questions: Start
(make invariant true)? Stop (invariant together with false loop condition imply result)? Progress (loop
body makes progress toward termination)? Invariant (repetend keeps the loop invariant true)? Be able to
develop a loop given the precondition, postcondition, and loop invariant. Be able to generalize a precondi-
tion and postcondition given as array diagrams to a loop invariant.

7. Testing. Know the material covered in recitation on testing and the material discussed under JavaHy-
perText entry “testing”. Know the basics of JUnit testing as done in Eclipse: the need for the annotation
@Test, the use of procedure assertEquals(expected-value, computed-value), etc. See the JavaHyperText
entry “JUnit testing”.

8. Searching/sorting. Be able to develop linear search, binary search in a sorted array, insertion sort, se-
lection sort, partition algorithm of quicksort, quicksort, and mergesort (not the algorithm to merge adja-
cent sorted segments). Stable versus unstable sorting algorithms.

9. Complexity. Know the definition of f(n) is O(g(n)). Be able to prove simple theorems like n*n + 2
is O(n*n). Be able to look at a simple program and determine its order of execution. Know the basic
complexity categories, e.g. O(1), O(log n), O(n), O(n log n), O(n^2), O(n^3), …, O(2^n).

