
Lecture 24 – Fall 2018

Synchronization

Prelim 2 tonight!

The room assignments are on the course website, page
Exams.

Check it carefully!
Come on time!
Bring you Cornell id card!

No lunch with gries this morning. Too much going on. Will
reschedule for after Thanksgiving.

Concurrent Programs

A thread or thread of execution is a sequential stream
of computational work.
Concurrency is about controlling access by multiple
threads to shared resources.

Last time: Learned about
1. Race conditions
2. Deadlock
3. How to create a thread in Java.

Purpose of this lecture

Show you Java constructs for eliminating race conditions,
allowing threads to access a data structure in a safe way but
allowing as much concurrency as possible.
This requires

¨ (1) The locking of an object so that others cannot access it, called
synchronization.

¨ (2) Use of two new Java methods: wait() and notifyAll()

As an example, throughout, we use a bounded buffer.

Look at JavaHyperText, entry Thread !!!!!!!

4

An Example: bounded buffer

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of
bread and put them in the queue

Threads B: consume loaves by
taking them off the queue

An Example: bounded buffer

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of
bread and put them in the queue

Threads B: consume loaves by
taking them off the queue

Separation of concerns:
1. How do you implement a queue in an array?
2. How do you implement a bounded buffer, which
allows producers to add to it and consumers to take
things from it, all in parallel?

ArrayQueue

Array b[0..5]

0 1 2 3 4 5 b.length

put values 5 3 6 2 4 into queue

5 3 6 2 4b

Array b[0..5]

8

0 1 2 3 4 5 b.length

put values 5 3 6 2 4 into queue

get, get, get

5 3 6 2 4b

ArrayQueue

Array b[0..5]

9

0 1 2 3 4 5 b.length

put values 5 3 6 2 4 into queue

get, get, get

put values 1 3 5

2 4 13 5 Values wrap around!!b

ArrayQueue

10

int[] b; // 0 <= h < b.length. The queue contains the
int h; // n elements b[h], b[h+1], b[h+2], …
int n; // b[h+n-1] (all indices mod b.length)

h

/** Pre: there is space */
public void put(int v){

b[(h+n) % b.length]= v;
n= n+1;

}

/** Pre: not empty */
public int get(){

int v= b[h];
h= (h+1) % b.length;
n= n-1;
return v;

}

ArrayQueue

0 1 2 3 4 5 b.length
2 4 13 5 Values wrap around!!b

11

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public void produce(E v) {

if (!aq.isFull()) { aq.put(v) };
}

/** Consume v from the bounded buffer.*/
public E consume() {

return aq.isEmpty() ? null : aq.get();
}

}

Bounded Buffer

12

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public void produce(E v) {

if (!aq.isFull()) { aq.put(v) };
}

}

Bounded Buffer

Problems
1. Chef doesn’t easily know whether bread was added.
2. Suppose

(a) First chef finds it not full.
(b) Another chef butts in and adds a bread
(c) First chef tries to add and can’t because

it’s full. Need a way to prevent this

Synchronized block
a.k.a. locks or mutual exclusion

1. Might have to wait if other thread has acquired object.

2. While this thread is executing the synchronized block,
The object is locked. No other thread can obtain the lock.

synchronized (object} { … }

Execution of the synchronized block:
1. “Acquire” the object, so that no other thread can acquire it

and use it.
2. Execute the block.
3. “Release” the object, so that other threads can acquire it.

14

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public void produce(E v) {

if (!aq.isFull()) { aq.put(v) };

}

}

Bounded Buffer

After finding aq not full, but before putting v,
another chef might beat you to it and fill up
buffer aq!

Use of synchronized

Key is hanging the outhouse.

Anyone can grab the key, go
inside, and lock the door. They
have the key.

15

When they come out, they lock
the door and hang the key by
the front door. Anyone (only
one) person can then grab the
key, go inside, lock the door.

That’s what synchronized
implements!

synchronized (object) {
code

}
The object is the outhouse.
The code is the person,
waiting to get into the object.
If the key is on the door, the
code takes it, goes in, locks
the door, executes, opens the
door, comes out, and hangs
the key up.

16

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public void produce(E v) {

if (!aq.isFull()) { aq.put(v) };

}

}

Synchronized block

synchronized (aq) {

}

Synchronized blocks

You can synchronize (lock) any object, including this.

public void produce(E v) {
synchronized(aq){

if(!aq.isFull()){ aq.put(v); }
}

}

public void produce(E v) {
synchronized(this) {

if (!aq.isFull()) { aq.put(v);
}

}
}

BB@10
BB@10

aq______

produce() {…} consume() {…}

BB

Synchronized Methods

You can synchronize (lock) any object, including this.

public synchronized void produce(E v) {
if (!aq.isFull()) { aq.put(v); }

}

Or you can synchronize methods
This is the same as wrapping the entire method implementation

in a synchronized(this) block

public void produce(E v) {
synchronized(this) {

if (!aq.isFull()) { aq.put(v); }
}

}

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public synchronized void produce(E v) {

if (!aq.isFull()) { aq.put(v); }
}

/** Consume v from the bounded buffer.*/
public synchronized E consume() {

return aq.isEmpty() ? null : aq.get();
}

}

19

What happens of aq is full?

We want to wait until it becomes non-full —until there
is a place to put v.
Somebody has to buy a loaf of bread before we can put
more bread on the shelf.

Bounded buffer

Two lists for a synchronized object

For every synchronized object sobj, Java maintains:
1. locklist: a list of threads that are waiting to obtain

the lock on sobj
2. waitlist: a list of threads that had the lock but

executed wait()
• e.g. because they couldn't proceed

Method wait() is defined in Object

class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public synchronized void produce(E v) {

while (aq.isFull()) {
try { wait(); }
catch(InterruptedException e) {}

}
aq.put(v);

}

...
}

21

Wait()

puts thread on the wait list

need while loop (not if statement)
to prevent race conditions

threads can be interrupted
if this happens just continue.

notifyAll()

locklist waitlist

notify() and notifyAll()

• Methods notify() and notifyAll() are defined in
Object

• notify() moves one thread from the waitlist to the
locklist
• Note: which thread is moved is arbitrary

• notifyAll() moves all threads on the waitlist to the
locklist

locklist waitlist

/** An instance maintains a bounded buffer of fixed size */
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public synchronized void produce(E v) {

while (aq.isFull()) {
try { wait(); }
catch(InterruptedException e){}

}
aq.put(v);

}
...

}

23

notify() and notifyAll()

notifyAll()

WHY use of notify() may hang.
24

Work with a bounded buffer of length 1.
1. Consumer W gets lock, wants White bread,
finds buffer empty, and wait()s: is put in set 2.
2. Consumer R gets lock, wants Rye bread,
finds buffer empty, wait()s: is put in set 2.
3. Producer gets lock, puts Rye in the buffer,
does notify(), gives up lock.
4. The notify() causes one waiting thread to be
moved from set 2 to set 1. Choose W.
5. No one has lock, so one Runnable thread, W, is given lock.
W wants white, not rye, so wait()s: is put in set 2.
6. Producer gets lock, finds buffer full, wait()s: is put in set 2.
All 3 threads are waiting in set 2. Nothing more happens.

Two sets:

1. lock:
threads

waiting to
get lock.

2. wait:
threads

waiting to
be notified

Should one use notify() or notifyAll()

But suppose there are two kinds of bread on the shelf —and one
still picks the head of the queue, if it’s the right kind of bread.

Using notify() can lead to a situation in which no one can make
progress.

notifyAll() always works; you need to write documentation if
you optimize by using notify()

25

Eclipse Example

Producer: produce random ints

Consumer 1: even ints

Consumer 2: odd ints

Dropbox: 1-element bounded buffer

26

Locklist
Threads wanting
the Dropbox

Waitlist
Threads who
had Dropbox
and waited

Key is hanging by front door.

Anyone can grab the key, go
inside, and lock the door. They
have the key.

27

When they come out, they lock
the door and hang the key by
the front door. Anyone (only
one) person can then grab the
key, go inside, lock the door.

That’s what synchronized
implements!

BUT: You leave the back
door open and tell your
friends to go in whenever
they want

Threads that don’t
synchronize can get in.
Dangerous but useful to
increase efficiency.

Word of warning with synchronized

Using Concurrent Collections...
28

Java has a bunch of classes to make synchronization easier.

It has synchronized versions of some of the Collections classes

It has an Atomic counter.

From spec for HashSet
29

… this implementation is not synchronized. If multiple threads
access a hash set concurrently, and at least one of the threads
modifies the set, it must be synchronized externally. This is
typically accomplished by synchronizing on some object that
naturally encapsulates the set. If no such object exists, the set
should be "wrapped" using method Collections.synchronizedSet
This is best done at creation time, to prevent accidental
unsynchronized access to the set:

Set s = Collections.synchronizedSet(new HashSet(...));

Race Conditions

tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;

tmp = tmp + 1;
store tmp to i;

tmp = load i;

Finally, i = 1
time

Load 0 from memory

Load 0 from memory

Store 1 to memory

Store 1 to memory

Using Concurrent Collections...
31

import java.util.concurrent.atomic.*;

public class Counter {
private static AtomicInteger counter;

public Counter() {
counter= new AtomicInteger(0);

}

public static int getCount() {
return counter.getAndIncrement();

}
}

Fancier forms of locking

Java. synchronized is the core mechanism

But. Java has a class Semaphore. It can be used to allow a
limited number of threads (or kinds of threads) to work at the
same time. Acquire the semaphore, release the semaphore

Semaphore: a kind of synchronized counter (invented by
Dijkstra in 1962-63, THE multiprogramming system)

The Windows and Linux and Apple O/S have kernel locking
features, like file locking

Python: acquire a lock, release the lock. Has semaphores

32

Summary
33

Use of multiple processes and multiple threads within each
process can exploit concurrency

n may be real (multicore) or virtual (an illusion)
Be careful when using threads:

n synchronize shared memory to avoid race conditions
n avoid deadlock
Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic (covered in
more detail in cs3410 and cs4410)
Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.
html

