f9e-an | fvistey e

- o . ; :

| orial ik
A e
e oF el dictator 2 o, "

“‘.“y ad() ‘l,“““ C
dictior v
ction /'dik (s
ciation in speal)crilx/lgn'o';“‘!m.., |
dictio from dico dict. Says
dictionary /dikfonos

cut into

.. S . . - - Of a paniCll\n
HASHING CS2110

Announcements

2 4
o Submit Prelim 2 conflicts by Thursday night

1 Ab is due Nov 7 (tomorrow!)

ldeal Data Structure
S

ArrayList ST113 10 O(Tl) 0(1) O(Tl)

Led o0 0(1) O(n) 0(n)
Goal: 0(1) o(1) o)

AKA add, lookup, search

Mystery Data Structure in Your Life

The zero hundreds
is the place to look,
for encyclopedias
or a Bigfoot book.

wg%
|96

The 100s books explain
feelings you've had,
from happy to grumpy
or even sad.

religious books to read,
or myths and legends,
if that is what you need.

tell of holidays,
and how we celebrate
in many ways.

«H

®0000 T 10:20 AM @ @ 51% 4
All Contacts 2l
— What do
H A
; | these data
Katherine E
: :
Marjorie " SII.rUCIl.U res
N .
.
- : have in
R T
Riven \2 2
s commong
Summer :
i bO@:Qﬁ?']%:? 100-199 i.e 200-299 % 1 300-399 'M 400-499 %
, ﬁompt;.ters,& ~] | Philosophy and Religion { cial Sc:ences I.anguage =
Ge'r‘leor:I“;elf(:I"’ence Psychigiogy The 200s have The 3005 books

On the 400s shelf,
languages abound.
Books about Spanish
or French can be found.

Fa

L\/_l

|1 500-599 ‘\
e
-
Science
The 500s shelf is
the place to explore,

science, math,
or a dinosaur.

~1

=

| 600-699 >
——

Technology

The 600s books
are your best bets,
for airplanes, cars,
and friendly pets.

yo 2B

:

] 700—799

L.\f_v_ J,

Arts and
Recreation
The 700s shelf has
books of all sorts,

for drawing, music,
and even sports.

’ “sog@ J{

l.iterature \

The 800s is
the place to be,
for jokes, riddles,

and poetry. .o

Y |

1 900—999
200299

History and
Geography
In the 900s
there’s g20§raphy,
people, places,
and hlstory
LEen

New Data Structure: Hash Set
IR

ArrayList AREIG 0 (Tl) 0 (1) 0] (Tl)
Led @ 0(1) O(n) 0(n)
HashSet g :]2 ; 0(1) 0(1) 0(1)

—~

Expected time
Worst-case: 0(n)

AKA add, lookup, search

Intuition behind a Hash Set

N Idea: finding an element in an array takes constant time

So... let’s place elements in the array based on their

~ - . . .
Q when you know which index it is stored in.

starting letter! (A=0, B=1, ...)

of
15t letter

add (“ca”

)
(

0 1 2

@
3

4

5

14

15

16

25

b CA

OR

PA

_

. # of
contains (“DE”) DE
15t lett

O

What could possibly go wrong?

0 2 3 5 6 10 11 12 13 14 15 16 25
CA | DE FL GA MA [NY [OR | PA
Some buckets get used quite a bit!
called Collisions
ooooo = 10:20AM @ © 51% 4 eeeee Omnitel = =
Not all buckets get used e I T
R
H s
K o Arline Sanson
Katherine : Arrlinne Sanson
M . Ava Swift
Marjorie ; Andrew Swift
N “2' Cindy S. Schmidt
Nick E John S. Scott
R E Joseph Shaw
Riven . Robert Sutton
S E Ryan Smart
Summer ¢ Ryan Stevens

Hash Functions

Requirements:
deterministic
1 0 return a number®
1
4 Properties of a good hash:
3

fast
collision-resistant
evenly distributed

hard to invert

* the number is either in [0..n-1] where n is the size of the Hash Set, or
you compute the hash and then % n, constraining it to be in [0...n-1]

Example: hashCode()

Method defined in java.lang.Object

Default implementation: uses memory address of
object

If you override equals, you must override hashCodelll

String overrides hashCode:
s.hashCode() := s[0]* 31" + s[1]*31™"% + ... + s[n—1]

Do we like this hashCode?

Can we have perfect hash functions?

Perfect hash functions map each value to a different
index in the hash table

Impossible in practice
Don’t know size of the array

Number of possible values far far exceeds the
array size

No point in a perfect hash function if it takes too
much time to compute

Collision Resolution
—

Two ways of handling collisions:

1. Chaining 2. Open Addressing

3

Chaining (1)

add (“'NY”)
L]
Each bucket is the beginning of a Linked List
dd (\\NY//) NY # O f
a
15t letter
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 25
b | Ll ol
v vV VvV Vv v
CA MA || NY || OR || PA

Chaining (2) ()
I ' add (“NJ”)

Each bucket is the beginning of a Linked List

f
add (“"NJ”) NJ # O
15t letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
b | | 11l
v vV VvV VvV vV
CA MA (| NY || OR || PA
L Note: Would be better to add 4
CO elements to the head of the linked list. NJ

Chaining (3) o

. | add (“NJ”)
Each bucket is the beginning of a Linked List get ("NJ")
t("NJ”) (NJ # of
e

7 15t letter
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

. | | Ll

Y v v v ¥
CA MA || NY || OR || PA
! !
CO N

Chaining in Action

Insert the following elements (in order) into an array of size 6:
if code > n, use (code % n_buckets)

element a b |c d |e

hashCode O |9 17 1119

Do &

Open Addressing (1) e ()
- |

Probing: Find another available space

f
add (“NY”) NY - # O
15t letter

Open Addressing (2) e ()
I | add (“NJ”)

Probing: Find another available space

f
add (“NJ”) NJ #_O
15t letter

0 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15 | 16
b CA | CO MA [NY | OR | PA | NJ
>
search
for

space

Open Addressing (3) S (NE)

I . add (“NJ”)
Probing: Find another available space
get (”NJ")
t (\\NJ//) NJ # Of
e
J 15t letter
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
b CA | CO MA | NY [OR | PA | NJ

>
] Search for NJ
What could possibly go wrong? (stop searching if

add(“NY”),add(“NJ”),get (“NY”),get(“NJ”) clement is NULL)

Deletion Problem w/Open Addressing

. | add (“NY”) |
Probing: Find another available space ZEE (T,
get ("NY")
get(IINJH)
0 1 2 3 10 11 12 13 14 15 16 25
b CA | CO MA | NY | OR | PA | NJ

—
Search for NJ

(stops searching b/c
element b[13] is NULL!)

Deletion Solution for Open Addressing

] | add (“NY”) |
Probing: Find another available space ZEE (T,
get (”NY")
Need to mark element as “not present” get ("NJ")

Indicates to search that it should keep looking
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 25
b CA | coO MA [NY | OR | PA | NJ
>

Search for NJ
(searches until it finds a NULL
element or the present
element it’s looking for)

Different probing strategies
—

When a collision occurs, how do we search for an empty space?

clustering: linear probing: quadratic probing:
problem where nearby search the array in search the array in

hashes have very similar order: nonlinear sequence:
probe sequence so we i, i+1,1+2, i+3 . .. i, i+12 i+22, i+32 .,

get more collisions

In order to have access to every bucket, important for size to be a
prime number when using quadratic probing.

Linear Probing in Action
—

Insert the following elements (in order) into an array of size 5:

element a b |c d

hashCode O 8 17 |12

0 1 2 3 4

a C b d

probe #1 probe #2 probe #3
inserting d: inserting d: inserting d:
i i+ 1 i+2
fulll fulll has

space!

Quadratic Probing in Action
—

Insert the following elements (in order) into an array of size 5:

element a b |c d

hashCode O 8 17 |12

0 1 2 3 4

a d C b

probe #3 probe #1 probe #2
inserting d: inserting d: inserting d:
i+22 i i+12
has fulll fulll

space!

Load Factor

Load factor

=y _ _"of entries
length of array

If load factor = V2, expected # of probes is 2.
What happens when the array becomes too full?
I.e. load factor gets a lot bigger than 727?

no longer expected
constant time operations

best range
0 —— 1

@ -_— - >

waste of memory too slow

Resizing
—

Solution: Dynamic resizing >

7 double the size™*

- reinsert / rehash all
elements to new array

7 Why not simply copy
into first half?

*if using quadratic probing, use a prime >2n

Collision Resolution Summary
N

01 store entries in 1 store all entries in table
separate chains (linked 1 yse linear or quadratic
lists) probing to place items

o can have higher load 1 uses less memory
factor/degrades

1 clustering can be a
problem — need to be
more careful with
choice of hash function

gracefully as load
factor increases

Application: Hash Map

ity ‘d1k fanary,
.?» = (usu- al be Sp‘
‘ 2 the wordsp:t?gegg
. 5 Words j,
book e
Particula.

» Use the key for lookups
» Store the value

Map<K,V>{

void put(K key, V value);

void update(K key, V value);

V get(K key);

V remove(K key);

Example: key is the word, value is its definition

Hash Map (1)

put (“New York”, “"NY”)

of

‘_\\\\\
“New York”
(Cew vork”)

15t letter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 25
o | HEEEEE
v Y VvV V. VY
CA MA || NY || OR || PA

Hash Map (2)

put (“New York”, “"NY”)

get (“California”)

of

@Jiorr}

15t letter

10

11

12

13

15

16

25

o | | Ll]
v Y VvV VvV vV
C_A MA || NY || OR || PA
v v
CoO NJ

HashMap in Java

Computes hash using key.hashCode()
No duplicate keys

Uses chaining to handle collisions

Default load factor is ./5

Java 8 attempts to mitigate worst-case
performance by switching to a BST-based chaining!

Hash Maps in the Real World

Network switches

Distributed storage

Database indexing

Index lookup (e.g., Dijkstra's shortest-path algorithm)

Useful in lots of applications...

