Ideal Data Structure
|

e e M e)
ArrayLlst 0 (Tl) 0 (1) 0 (n)

LinkedList 0 (1) 0 (n) 0 (Tl)
Goal: o) o) o)

AKA add, lookup, search

New Data Structure: Hash Set
[

T T T T e
ArruyLlst 0(n) 0(1) 0(n)
LinkedlList 0(1) 0(n) 0(n)

HashSet 0(‘1) 0(1) o)

Expected time
Worst-case: 0(n)

AKA add, lookup, search

11/12/18

Announcements

R ---——————————..ee,
o Submit Prelim 2 conflicts by Thursday night

o Aé is due Nov 7 (tomorrow!)

Mystery Data Structure in Your Life

What do
these data
structures
have in
common?

Intuition behind a Hash Set
[

~ N Idea: finding an element in an array takes constant time
- L o -
Q when you know which index it is stored in.

So... let’s place elements in the array based on their
starting letter! (A=0, B=1, ...)

“ear # of
add(rcan) 1st lette
2 | s

b CA MA [NY |OR [PA

A

; # of
contains (“DE”)
15t lette

a | s e |7 |8 | 9|01 |21 |4|15]|w.]| . 2

11/12/18

What could possibly go wrong? Hash Functions
[==
0 1 2 3 4 5 3 7 8 9 10 | 11| 12| 13| 14|15 |16 25 O Requiremenfs:
b| AL CA | DE FL GA MA [NY | OR | PA
s deterministic
Q 10 return a number*
0 Some buckets get used quite a bit! 2 1
called Collisions %b@ 43 o Properties of a good hash:

o Not all buckets get used = = fast

Al Contacts

collision-resistant

evenly distributed

Kathorine

hard to invert

Marjorio
Nk

Riven.

* the number is either in [0..n-1] where n is the size of the Hash Set, or

-~ [you compute the hash and then % n, constraining it to be in [0...n-1]
Example: hashCode() Can we have perfect hash functions?
== ==
o Method defined in java.lang.Obiject o Perfect hash functions map each value to a different

o Default implementation: uses memory address of index in the hash table
object

If you override equals, you must override hashCodelll o Impossible in practice

o String overrides hashCode: ® Don't know size of the array

s.hashCode() := s[0] * 31" + s[1]*31"2 4 .. 4+ s[n—1] ® Number of possible values far far exceeds the
array size

® No point in a perfect hash function if it takes too

Do we like this hashCode? .
much time to compute

Collision Resolution Chaining (1) add(we)
== ==

Each bucket is the beginning of a Linked List

Two ways of handling collisions:

1. Chaining 2. Open Addressing

add (“NY”)

add (“NJ”)

Chaining (2)

add (“NY”)

I | add (“NJ”) I

Each bucket is the beginning of a Linked List

Note: Would be better to add
elements to the head of the linked list.

Chaining in Action

Insert the following elements (in order) into an array of size 6:
if code > n, use (code % n_buckets)

element a b jc |d |e
hashCode 0 (9 (17|11 |19
0 1 2 3 4 5

d
Open Addressing (2) ada (we)
[| add("N3")
Probing: Find another available space
add (“NJ”)
o 1zl a|s e |7 e o |w0]n|z]|w|u|n]w 2
cA [co MA | NY [OR [PA | NJ

searc
for
space

11/12/18

Chcnnlng (3) add (“NY”)
| add (“NJ”) ‘
. _— . . get ("NJ")
Each bucket is the beginning of a Linked List
get ("NJ”)
b
Al
[ma | Jor][ea
Open Addressing (1) wad (e
== \
Probing: Find another available space
add (“NY”)
o | 12| s e s e[| e | 9|0]| z]w|u]|s]|w 2
b CA | co MA | NY | OR | PA
Open Addressing (3) aad Ny
| add (“NJ”) ‘
Probing: Find another available space
get ("NJ")
get (“"NJ”)
o 12| s e s e |7 |8 | 9| 0]n]|z]w|u]|s]|w 2
b cA | co MA | NY |OR | PA | Ny
Seorchfc!!]
What could possibly go wrong? (stop searching if
add(“NY”),add(“NJ”),get (“NY”),get(“NI”) element is NULL)

Deletion Problem w/Open Addressing

| | add(“NY”) |

Probing: Find another available space SRR

get (”NY")
get (”NJ")
ot 2| a|s e |7 e o 0| n2]|w|u|n]1s 2
b cA |co MA | NY [OR [PA | NJ

I Search for NJ

(stops searching b/c
element b[13] is NULL!)

Different probing strategies
[

When a collision occurs, how do we search for an empty space?

clustering: linear probing: quadratic probing:
problem where nearby search the array in search the array in
hashes have very similar order: nonlinear sequence:

probe sequence so we i, i+1,i+2,i+3 ... i, i+12, i+22 i+32 . ..
get more collisions

In order to have access to every bucket, important for size to be a
prime number when using quadratic probing.

Quadratic Probing in Action
o

Insert the following elements (in order) into an array of size 5:

element a b |c |d

hashCode 0 (8 |17 |12

0 1 2 3 4
a d [b

probe #3 probe #1 probe #2
inserting d: inserting d: inserting d:

i+22 i i+12
has full! full!
space!

11/12/18

Deletion Solution for Open Addressing

| add (“NY”) \
Probing: Find another available space SRR
get (”"NY")
Need to mark element as “not present” get(“NJH)
Indicates to search that it should keep looking
o | 12| s e s e[| e | 9|0]| z]w|u]|s]|w 2
b CA | co MA | NY [OR | PA [N

Search fol !U

(searches until it finds a NULL
element or the present
element it’s looking for)

Linear Probing in Action
[

Insert the following elements (in order) into an array of size 5:

element a b |c |d

hashCode 0 (8 |17 |12

0 1 2 3 4

a c b d

probe #1 probe #2 probe #3
inserting d: inserting d: inserting d:

i i+ it2
full! full! has
space!

Load Factor

| 24 |

Load factor }\‘ # Of entries
— length of array

If load factor = %2, expected # of probes is 2.

What happens when the array becomes too full?
i.e. load factor gets a lot bigger than 2?

no longer expected
constant time operations

best range

—— 1

waste of memory too slow

Resizing
=

Solution: Dynamic resizing

o double the size*

!
A

o reinsert / rehash all
elements to new array

o Why not simply copy
into first half?

*if using quadratic probing, use a prime >2n

Application: Hash Map
[

Map<K,V>{

g,‘., ';",—;.;:-‘-' void put(K key, V value);
& dictator. 2 oy,
orlally adv. (Lay,,
J:ﬂogrmxn,
@)n/ n.
_ ciation in speaki;
dictio from

void update(K key, V value);

V get(K key);

words j

K V remove(K key);

2 reference
s of a Plgcgh.

« Use the key for lookups
« Store the value

Example: key is the word, value is its definition

Hash Map (2)

put (“New York”,“NY”)

get(“California”)

of
“California”
1st lette
b
il
] ;ﬁmmaam

11/12/18

Collision Resolution Summary

0 store entries in o
separate chains (linked
lists)

o can have higher load
factor/degrades

gracefully as load
factor increases

[m]

store all entries in table
use linear or quadratic
probing to place items
uses less memory
clustering can be a
problem — need to be

more careful with
choice of hash function

Hash Map (1)

| I
put (“New York”, “NY”)

HashMap in Java

o1 Computes hash using key.hashCode()

No duplicate keys

o Uses chaining to handle collisions

o Default load factor is .75

o Java 8 attempts to mitigate worst-case

performance by switching to a BST-based chaining!

Hash Maps in the Real World

o Network switches

o Distributed storage

o Database indexing

o Index lookup (e.g., Dijkstra's shortest-path algorithm)
0 Useful in lots of applications...

11/12/18

