
SHORTEST PATH ALGORITHM
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CS2110.    Fall 2018
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A4 and A5 grades
A4 grades released. Read the feedback.
Mean time: 6.9 hours
Median time: 6.0 hours
Assignment A6 Piazza note contains a file with
comments extracted from your submissions.

A5 grades released early tomorrow morning but will contain only 
the grade for correctness. The grade may be reduced during this 
week (until Sunday) as graders check over your solution.
Reason for this process: If you got 100, you can use your A5 in 
A6; otherwise, use our solution –it will be made available 
tomorrow.
So far, 453/489 students got 100. Late ones not graded yet

2



A6. Implement shortest-path algorithm

Last semester: mean time: 3.7 hrs, median time: 3.0 hrs.
max: 30 hours !!!!
We give you complete set of test cases and a GUI to play with.
Efficiency and simplicity of code will be graded.
Read pinned note Assignment A6 note carefully:

2. Important! Grading guidelines. 
We demo it.

We will talk about prelim 2 (15 November) on Thursday.
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Tomorrow is Halloween (Hallowed Eve)

Last year, why did I get a 
Christmas card on Halloween?
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Because Dec 25 is Oct 31

1   1 13   15
2   2 14   16
3   3 15   17
4   4 16   20
5   5 17   21
6   6 18   22
7   7 19   23
8  10 20   24
9  11 21   25
10  12 22   26
11  13 23   27
12  14 24   30

25   31
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Dijkstra�s shortest-path algorithm
5

Edsger Dijkstra, in an interview in 2010 (CACM): 
… the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 
Mathematik 1, 269–271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and 
his contributions. As a historical record, this is a gold mine.

http://www.dijkstrascry.com
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Dijkstra�s shortest-path algorithm
6

Dijsktra describes the algorithm in English:
¨ When he designed it in 1956 (he was 26 years old), most people 
were programming in assembly language.
¨ Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished.
No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijkstra says, “my solution is preferred to another one 
… “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959).
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1968 NATO Conference on Software Engineering

• In Garmisch, Germany
• Academicians and industry people attended

• For first time, people admitted they did not know what they 
were doing when developing/testing software. Concepts, 
methodologies, tools were inadequate, missing

• The term software engineering was born at this conference.

• The NATO Software Engineering Conferences: 
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
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1968 NATO Conference on
Software Engineering, Garmisch, Germany

8

Dijkstra

Gries

Term “software engineering” coined for this conference
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1968 NATO Conference on
Software Engineering, Garmisch, Germany

9
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1
0

1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Edsger Dijkstra   Niklaus Wirth   Tony Hoare       David Gries  

Beards
The reason why some people grow

aggressive tufts of facial hair
Is that they do not like to show

the chin that isn't there.
a grook by Piet Hein
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Dijkstra�s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array d[0..n-1]: for each node w, store in 
d[w] the length of the shortest path from v to w.

wgt(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.
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1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and d[s] is length of shortest v ® s path.

3. All edges leaving S go to F.   

2. For a Frontier node f, at least one v ® f path contains only 
settled nodes (except perhaps for f) and d[f] is the length of the 
shortest such path

Frontier 
F

Settled 
S

Far off

f

f

(edges leaving the Far off set and 
edges from the Frontier to the 
Settled set are not shown)

The loop invariant

v

Settled S
This edge 
does not 
leave S!

Another way of saying 3:
There are no edges from S 
to the far-off set.
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1. For a Settled node s, d[s] is length of shortest v ® s path.

3. All edges leaving S go to F.   

2. For a Frontier node f, d[f] is length of shortest v ® f path
using only Settled nodes (except for f).

Theorem. For a node f in F with minimum d value (over nodes in 
F), d[f] is the length of a shortest path from v to f.

Frontier 
F

Settled 
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that d[v] is 0; it has minimum d value

L[g] ≥ L[f]
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Theorem. For a node f in F with 
minimum d value (over nodes in 
F), d[f] is the length of a shortest 
path from v to f.

Frontier 
F

Settled 
S

Far off

f

What does the theorem tell us about this frontier set?

(Cortland, 20 miles)    (Dryden, 11 miles)
(Enfield, 10 miles)       (Tburg, 15 miles)

Answer: The shortest path from the start node to 
Enfield has length 10 miles.

Note: the following answer is incorrect because we haven’t 
said a word about the algorithm! We are just investigating 
properties of the invariant:

Enfield can be moved to the settled set.
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1.  For s, d[s] is length of
shortest v® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

S=  { }; F=  { v }; d[v]=  0;

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

v

The algorithm

Loopy question 1:
How does the loop start? What 
is done to truthify the invariant?
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When does loop stop? When is 
array d completely calculated?

while (               )     {

}

1.  For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

F ≠ {}
The algorithm

Loopy question 2:

S=  { }; F=  { v }; d[v]=  0;
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while (              )  {

}

f= node in F with min d value;
Remove f from F, add it to S;

1.  For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

f

F ≠  {}
The algorithm

f

S=  { }; F=  { v }; d[v]= 0;

Loopy question 3: Progress toward termination?

Note: this is the earliest time 
that the shortest distance to 
this f is known!



for each neighbor w of f {

}

if (w not in S or F) {

} else {

}
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while ( )   {

}

f= node in F with min d value;
Remove f from F, add it to S;

1.  For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

F ≠  {}
The algorithm

f

S=  { }; F=  { v }; d[v]= 0;

Loopy question 4: Maintain invariant?

w
w



while (              )  {

}

for each neighbor w of f {

}
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f= node in F with min d value;
Remove f from F, add it to S;

1.  For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

w

F ≠  {}
The algorithm

f

S=  { }; F=  { v }; d[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F;

} else {

}

w
w



while ( )    {

}

for each neighbor w of f {

}
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f= node in F with min d value;
Remove f from F, add it to S;

1.  For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F          Far off

2. For f, d[f] is length of
shortest v ® f path of form

Theorem: For a node f in F
with min d value, d[f] is its
shortest path length

w

F ≠  {}
The algorithm

f

S=  { }; F=  { v }; d[v]= 0;

Algorithm is finished!

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F;

} else

}

w

if (d[f] + wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);  

f
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0
1

2

3
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Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4
2

4

1

3

3

Let’s extend the algorithm to calculate not only the length 
of the shortest path but the path itself.
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0
1

2

3
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Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4
2

4

1

3

3

Question: should we store in v itself the shortest path from v to 
every node? Or do we need another data structure to record 
these paths?

v 0
0 1
0 2

Not finished!
And how do
we maintain it?
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0
1

2

3
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Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4

2
4

1

3

3

For each node, maintain the backpointer on the shortest 
path to that node.
Shortest path to 0 is v -> 0. Node 0 backpointer is 4.
Shortest path to 1 is v -> 0 -> 1. Node 1 backpointer is 0.
Shortest path to 2 is v -> 0 -> 2. Node 2 backpointer is 0.
Shortest path to 3 is v -> 0 -> 2 -> 3. Node 3 backpointer is 2.

bk[w] is w’s backpointer
bk[0] = 4
bk[1] = 0
bk[2] = 0
bk[3] = 2
bk[4] (none) 
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F;

} else if (d[f] + wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);

}
}}

Maintain backpointers

When w not in S or F:
Getting first shortest path so 
far:

fv w

When w in S or F and 
have shorter path to
w:

bk[w]=  f; 

fv w

bk[w]=  f; 

Wow! It’s so easy to 
maintain backpointers!
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

This is our final high-level 
algorithm. These issues and 
questions remain:
1. How do we implement F?
2. The nodes of the graph 

will be objects of class 
Node, not ints. How will 
we maintain the info in 
arrays d and bk?

3. How do we tell quickly 
whether w is in S or F?

4. How do we analyze 
execution time of the 
algorithm?
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

1. How do we implement F?

Use a min-heap, with the 
priorities being the distances!

Distances ---priorities--- will 
change. That’s why we need 
changePriority in Heap.java
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S F          Far off

S=  { };  F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

For what nodes do we need a 
distance and a backpointer?
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S F          Far off

S=  { };  F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

For what nodes do we need a 
distance and a backpointer?

For every node in S and 
every node in F we need both 
its d-value and its 
backpointer (null for v)

Instead of arrays d and b, 
keep information associated 
with a node. Use what data 
structure for the two values?
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S F          Far off

S=  { };  F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

For what nodes do we need a 
distance and a backpointer?

For every node in S and 
every node in F we need both 
its d-value and its 
backpointer (null for v)

public class DistBack {
private int distance;
private node backPtr;
…

}
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S F          Far off

S=  { };  F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

F implemented as a heap of 
Nodes.
What data structure to use to 
maintain a DistBack object 
for each node in S and F?

For every node in S or F we 
need both its d-value and its 
backpointer (null for v):

public class DistBack {
private int distance;
private node backPtr;

…
}
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Given a node in S or F, we need 
to gets its DistBack object 
quickly.
What data structure to use?

public class DistBack {
private int distance;
private node backPtr;  
…

}

HashMap<Node, DistBack >  info

Implement this algorithm.
F: implemented as a min-heap.

info: replaces S, d, b

Final abstract algorithm
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

public class DistBack {
private int distance;
private node backPtr;

}HashMap<Node, DistBack> info

Investigate execution time. 
Important: understand algorithm 
well enough to easily determine 
the total number of times each 
part is executed/evaluated

Assume:
n nodes reachable from v
e edges leaving those n nodes
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

public class DistBack {
private int distance;
private Node backptr;

}HashMap<Node, DistBack> info

Question. How many times 
does F ≠  {} evaluate to 
true? 
To false?

Assume:
n nodes reachable from v
e edges leaving the n nodes

1 x
true n x

n x
n x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

public class DistBack {
private int distance;
private Node backPtr;

}HashMap<Node, DistBack> info

Directed graph
n nodes reachable from v
e edges leaving the n nodes

Harder: In total, how many 
times does the loop

for each neighbor w of f
find a neighbor and execute 
the repetend?

1 x
true n x

n x
n x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Answer: The for-each statement 
is executed ONCE for each node. During that 
execution, the repetend is executed once for 
each neighbor. In total then, the repetend is 
executed once for each neighbor of each node. 
A total of e times.

Directed graph
n nodes reachable from v
e edges leaving the n nodes

Harder: In total, how many 
times does the loop

for each neighbor w of f
find a neighbor and execute 
the repetend?

1 x
true n x

n x
n x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times does
w not in S or F

evaluate to true?

Answer: If  w is not in S or F, it is in the far-off 
set. When the main loop starts, n-1 nodes are in 
the far-off set. If w is in the far-off set, it is 
immediately put into w. Answer: n-1 times.

n-1 x
n-1 x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times is the 
if-statement executed?

Answer: The repetend is executed e times. The 
if-condition in the repetend is true n-1 times. 
So the else-part is executed e-(n-1) times. 
Answer: e+1-n times.

n-1 x
n-1 x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times is the if-
condition true and d[w] changed?

Answer: We don’t know. Varies.
expected case: e+1-x times.

n-1 x
n-1 x

e+1-n x
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes
Expected-case analysis

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

We know how often each 
statement is executed. 
Multiply by its O(…) time
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

Directed graph
n nodes reach-
able from v
e edges leaving 
the n nodes
Expected-case 
analysis

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

We know how often each statement is 
executed. Multiply by its O(…) time

O(1)
O(n)
O(n)
O(n log n)
O(e)
O(e)
O(n)
O(n log n)

O(e–n)
O((e–n) log n)
O(e–n)
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S F          Far off

S=  { }; F=  {v};  d[v]= 0;
while (F ≠  {})  {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]=  d[f] + wgt(f, w);
add w to F; bk[w]=  f; 

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]=  f; 

}
}}

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

O(1)                              1
O(n)                              2
O(n)                              3
O(n log n)                    4
O(e)                              5
O(e)                             6
O(n)                             7
O(n log n)                    8

O(e–n)           9
O((e–n) log n).      10
O(e–n)                  10

Dense graph, so e close to n*n: Line 10 gives O(n2 log n)

Sparse graph, so e close to n:    Line 4 gives O(n log n)


