
SHORTEST PATH ALGORITHM

Lecture 19

CS2110. Fall 2018

1

A4 and A5 grades
A4 grades released. Read the feedback.
Mean time: 6.9 hours
Median time: 6.0 hours
Assignment A6 Piazza note contains a file with
comments extracted from your submissions.

A5 grades released early tomorrow morning but will contain only
the grade for correctness. The grade may be reduced during this
week (until Sunday) as graders check over your solution.
Reason for this process: If you got 100, you can use your A5 in
A6; otherwise, use our solution –it will be made available
tomorrow.
So far, 453/489 students got 100. Late ones not graded yet

2

A6. Implement shortest-path algorithm

Last semester: mean time: 3.7 hrs, median time: 3.0 hrs.
max: 30 hours !!!!
We give you complete set of test cases and a GUI to play with.
Efficiency and simplicity of code will be graded.
Read pinned note Assignment A6 note carefully:

2. Important! Grading guidelines.
We demo it.

We will talk about prelim 2 (15 November) on Thursday.

3

Tomorrow is Halloween (Hallowed Eve)

Last year, why did I get a
Christmas card on Halloween?

4

Because Dec 25 is Oct 31

1 1 13 15
2 2 14 16
3 3 15 17
4 4 16 20
5 5 17 21
6 6 18 22
7 7 19 23
8 10 20 24
9 11 21 25
10 12 22 26
11 13 23 27
12 14 24 30

25 31

5

Dijkstra�s shortest-path algorithm
5

Edsger Dijkstra, in an interview in 2010 (CACM):
… the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do
this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1, 269–271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and
his contributions. As a historical record, this is a gold mine.

http://www.dijkstrascry.com

6

Dijkstra�s shortest-path algorithm
6

Dijsktra describes the algorithm in English:
¨ When he designed it in 1956 (he was 26 years old), most people
were programming in assembly language.
¨ Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.
No theory of order-of-execution time —topic yet to be developed.
In paper, Dijkstra says, “my solution is preferred to another one
… “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1, 269–271 (1959).

7
1968 NATO Conference on Software Engineering

• In Garmisch, Germany
• Academicians and industry people attended

• For first time, people admitted they did not know what they
were doing when developing/testing software. Concepts,
methodologies, tools were inadequate, missing

• The term software engineering was born at this conference.

• The NATO Software Engineering Conferences:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

8

1968 NATO Conference on
Software Engineering, Garmisch, Germany

8

Dijkstra

Gries

Term “software engineering” coined for this conference

9

1968 NATO Conference on
Software Engineering, Garmisch, Germany

9

10

1
0

1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Edsger Dijkstra Niklaus Wirth Tony Hoare David Gries

Beards
The reason why some people grow

aggressive tufts of facial hair
Is that they do not like to show

the chin that isn't there.
a grook by Piet Hein

4

0

1

2 3

11

Dijkstra�s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array d[0..n-1]: for each node w, store in
d[w] the length of the shortest path from v to w.

wgt(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.

12

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and d[s] is length of shortest v ® s path.

3. All edges leaving S go to F.

2. For a Frontier node f, at least one v ® f path contains only
settled nodes (except perhaps for f) and d[f] is the length of the
shortest such path

Frontier
F

Settled
S

Far off

f

f

(edges leaving the Far off set and
edges from the Frontier to the
Settled set are not shown)

The loop invariant

v

Settled S
This edge
does not
leave S!

Another way of saying 3:
There are no edges from S
to the far-off set.

13

1. For a Settled node s, d[s] is length of shortest v ® s path.

3. All edges leaving S go to F.

2. For a Frontier node f, d[f] is length of shortest v ® f path
using only Settled nodes (except for f).

Theorem. For a node f in F with minimum d value (over nodes in
F), d[f] is the length of a shortest path from v to f.

Frontier
F

Settled
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that d[v] is 0; it has minimum d value

L[g] ≥ L[f]

14

Theorem. For a node f in F with
minimum d value (over nodes in
F), d[f] is the length of a shortest
path from v to f.

Frontier
F

Settled
S

Far off

f

What does the theorem tell us about this frontier set?

(Cortland, 20 miles) (Dryden, 11 miles)
(Enfield, 10 miles) (Tburg, 15 miles)

Answer: The shortest path from the start node to
Enfield has length 10 miles.

Note: the following answer is incorrect because we haven’t
said a word about the algorithm! We are just investigating
properties of the invariant:

Enfield can be moved to the settled set.

15

1. For s, d[s] is length of
shortest v® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

S= { }; F= { v }; d[v]= 0;

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

v

The algorithm

Loopy question 1:
How does the loop start? What
is done to truthify the invariant?

16

When does loop stop? When is
array d completely calculated?

while () {

}

1. For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

F ≠ {}
The algorithm

Loopy question 2:

S= { }; F= { v }; d[v]= 0;

17

while () {

}

f= node in F with min d value;
Remove f from F, add it to S;

1. For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

f

F ≠ {}
The algorithm

f

S= { }; F= { v }; d[v]= 0;

Loopy question 3: Progress toward termination?

Note: this is the earliest time
that the shortest distance to
this f is known!

for each neighbor w of f {

}

if (w not in S or F) {

} else {

}

18

while () {

}

f= node in F with min d value;
Remove f from F, add it to S;

1. For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

F ≠ {}
The algorithm

f

S= { }; F= { v }; d[v]= 0;

Loopy question 4: Maintain invariant?

w
w

while () {

}

for each neighbor w of f {

}

19

f= node in F with min d value;
Remove f from F, add it to S;

1. For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path using
red nodes (except for f).

Theorem: For a node f in F
with min d value, d[f] is
shortest path length

w

F ≠ {}
The algorithm

f

S= { }; F= { v }; d[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F;

} else {

}

w
w

while () {

}

for each neighbor w of f {

}

20

f= node in F with min d value;
Remove f from F, add it to S;

1. For s, d[s] is length of
shortest v ® s path.

3. Edges leaving S go to F.

S F Far off

2. For f, d[f] is length of
shortest v ® f path of form

Theorem: For a node f in F
with min d value, d[f] is its
shortest path length

w

F ≠ {}
The algorithm

f

S= { }; F= { v }; d[v]= 0;

Algorithm is finished!

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F;

} else

}

w

if (d[f] + wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);

f

4

0
1

2

3

21

Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4
2

4

1

3

3

Let’s extend the algorithm to calculate not only the length
of the shortest path but the path itself.

4

0
1

2

3

22

Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4
2

4

1

3

3

Question: should we store in v itself the shortest path from v to
every node? Or do we need another data structure to record
these paths?

v 0
0 1
0 2

Not finished!
And how do
we maintain it?

4

0
1

2

3

23

Extend algorithm to include the shortest path

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0

v 4

2
4

1

3

3

For each node, maintain the backpointer on the shortest
path to that node.
Shortest path to 0 is v -> 0. Node 0 backpointer is 4.
Shortest path to 1 is v -> 0 -> 1. Node 1 backpointer is 0.
Shortest path to 2 is v -> 0 -> 2. Node 2 backpointer is 0.
Shortest path to 3 is v -> 0 -> 2 -> 3. Node 3 backpointer is 2.

bk[w] is w’s backpointer
bk[0] = 4
bk[1] = 0
bk[2] = 0
bk[3] = 2
bk[4] (none)

24

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F;

} else if (d[f] + wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);

}
}}

Maintain backpointers

When w not in S or F:
Getting first shortest path so
far:

fv w

When w in S or F and
have shorter path to
w:

bk[w]= f;

fv w

bk[w]= f;

Wow! It’s so easy to
maintain backpointers!

25

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

This is our final high-level
algorithm. These issues and
questions remain:
1. How do we implement F?
2. The nodes of the graph

will be objects of class
Node, not ints. How will
we maintain the info in
arrays d and bk?

3. How do we tell quickly
whether w is in S or F?

4. How do we analyze
execution time of the
algorithm?

26

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

1. How do we implement F?

Use a min-heap, with the
priorities being the distances!

Distances ---priorities--- will
change. That’s why we need
changePriority in Heap.java

27

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

For what nodes do we need a
distance and a backpointer?

28

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

For what nodes do we need a
distance and a backpointer?

For every node in S and
every node in F we need both
its d-value and its
backpointer (null for v)

Instead of arrays d and b,
keep information associated
with a node. Use what data
structure for the two values?

29

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

For what nodes do we need a
distance and a backpointer?

For every node in S and
every node in F we need both
its d-value and its
backpointer (null for v)

public class DistBack {
private int distance;
private node backPtr;
…

}

30

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

F implemented as a heap of
Nodes.
What data structure to use to
maintain a DistBack object
for each node in S and F?

For every node in S or F we
need both its d-value and its
backpointer (null for v):

public class DistBack {
private int distance;
private node backPtr;

…
}

31

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Given a node in S or F, we need
to gets its DistBack object
quickly.
What data structure to use?

public class DistBack {
private int distance;
private node backPtr;
…

}

HashMap<Node, DistBack > info

Implement this algorithm.
F: implemented as a min-heap.

info: replaces S, d, b

Final abstract algorithm

32

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

public class DistBack {
private int distance;
private node backPtr;

}HashMap<Node, DistBack> info

Investigate execution time.
Important: understand algorithm
well enough to easily determine
the total number of times each
part is executed/evaluated

Assume:
n nodes reachable from v
e edges leaving those n nodes

33

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

public class DistBack {
private int distance;
private Node backptr;

}HashMap<Node, DistBack> info

Question. How many times
does F ≠ {} evaluate to
true?
To false?

Assume:
n nodes reachable from v
e edges leaving the n nodes

1 x
true n x

n x
n x

34

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

public class DistBack {
private int distance;
private Node backPtr;

}HashMap<Node, DistBack> info

Directed graph
n nodes reachable from v
e edges leaving the n nodes

Harder: In total, how many
times does the loop

for each neighbor w of f
find a neighbor and execute
the repetend?

1 x
true n x

n x
n x

35

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Answer: The for-each statement
is executed ONCE for each node. During that
execution, the repetend is executed once for
each neighbor. In total then, the repetend is
executed once for each neighbor of each node.
A total of e times.

Directed graph
n nodes reachable from v
e edges leaving the n nodes

Harder: In total, how many
times does the loop

for each neighbor w of f
find a neighbor and execute
the repetend?

1 x
true n x

n x
n x

36

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times does
w not in S or F

evaluate to true?

Answer: If w is not in S or F, it is in the far-off
set. When the main loop starts, n-1 nodes are in
the far-off set. If w is in the far-off set, it is
immediately put into w. Answer: n-1 times.

n-1 x
n-1 x

37

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times is the
if-statement executed?

Answer: The repetend is executed e times. The
if-condition in the repetend is true n-1 times.
So the else-part is executed e-(n-1) times.
Answer: e+1-n times.

n-1 x
n-1 x

38

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes1 x

true n x
n x
n x

true e x
e x

How many times is the if-
condition true and d[w] changed?

Answer: We don’t know. Varies.
expected case: e+1-x times.

n-1 x
n-1 x

e+1-n x

39

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Directed graph
n nodes reachable from v
e edges leaving the n nodes
Expected-case analysis

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

We know how often each
statement is executed.
Multiply by its O(…) time

40

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

Directed graph
n nodes reach-
able from v
e edges leaving
the n nodes
Expected-case
analysis

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

We know how often each statement is
executed. Multiply by its O(…) time

O(1)
O(n)
O(n)
O(n log n)
O(e)
O(e)
O(n)
O(n log n)

O(e–n)
O((e–n) log n)
O(e–n)

41

S F Far off

S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {

f= node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {

if (w not in S or F) {
d[w]= d[f] + wgt(f, w);
add w to F; bk[w]= f;

} else if (d[f]+wgt (f,w) < d[w]) {
d[w]= d[f] + wgt(f, w);
bk[w]= f;

}
}}

1 x
true n x

n x
n x

true e x
e x

n-1 x
n-1 x

e+1-n x
e+1-n x
e+1-n x

O(1) 1
O(n) 2
O(n) 3
O(n log n) 4
O(e) 5
O(e) 6
O(n) 7
O(n log n) 8

O(e–n) 9
O((e–n) log n). 10
O(e–n) 10

Dense graph, so e close to n*n: Line 10 gives O(n2 log n)

Sparse graph, so e close to n: Line 4 gives O(n log n)

