
GRAPH SEARCH

Lecture 18
CS 2110

1

Announcements

¨ TODO before next Tuesday:
¨ Watch the tutorial on the shortest path algorithm
¨ Complete the associated the Quiz

2

Graphs
3

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 02 3

2 4

3

1

2

3

4

1 2 3 4
1
2
3
4

Adjacency List Adjacency Matrix

1 2

34

Representing Graphs

public interface Graph {

/** Return the number of nodes in the graph */
public int numNodes();

/** Return a list of edges in the graph */
public List<Pair> getEdges();

/** Check whether an edge exists */
public boolean hasEdge(int u, int v);

/** Return a list of neighbors of n.
* Precondition: 0 <= n < number of nodes */
public List<Integer> getNeighbors(int n);

/** Print the graph.
* Precondition: the graph has < 100 nodes */
public void printGraph();

}

Graph Interface

/** An instance is an ordered pair of integers */
public class Pair {

public int one; // the ordered pair (one, two)
public int two;

/** Constructor: a pair of ints h and k. */
public Pair(int h, int k) {

one= h;
two= k;

}

/** A representation (h, k) of this pair.*/
public String toString() {

return "(" + one + ", " + two + ")";
}

}

Pair Class

MatrixGraph Class
/** An instance is a graph maintained as an adjacency
matrix */
public class MatrixGraph implements Graph{

public boolean[][] matrix; // adjacency matrix
public int n; // number of nodes
public int m; // number of edges

/** A graph with n nodes numbers 0..n-1 and edges
* given by edges. */

public MatrixGraph(int numNodes, Pair[] edges) {
n= numNodes;
m= edges.length;

matrix= new boolean[n][n];
for (Pair p : edges) {

matrix[p.one][p.two]= true;
}

} ...

¨ Search
¤ Depth-first search
¤ Breadth-first search

¨ Shortest paths
¤ Dijkstra's algorithm

¨ Spanning trees
Algorithms based on properties
Minimum spanning trees

¤ Prim's algorithm
¤ Kruskal's algorithm

Graph Algorithms

Search on Graphs

¨ Given a graph !, #
and a vertex $ ∈ !

¨ We want to "visit"
each node that is
reachable from $

9

There are many paths to
some nodes.

How do we visit all nodes
efficiently, without doing
extra work?

1

7

2

5

3

4

6
8

1

7

2

5

3

4

6
8

Depth-First Search

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u is unvisited.
*/
public static void dfs(int u) {

mark u

for all edges (u,v):

if v is unmarked:
dfs(v);

}

10

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

1

7

2

5

3

4

6
8

1 2 3

57

8

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

Depth-First Search

/** Visit all nodes reachable
on unvisited paths from u.
Precondition: u is unvisited.
*/
public static void dfs(int u) {

mark u

for all edges (u,v):

if v is unmarked:
dfs(v);

}

11

Intuition: Recursively visit all vertices that are reachable along
unvisited paths.

Suppose there are ! vertices that
are reachable along unvisited paths
and " edges:

Worst-case running time? #(! + ")
Worst-case space? #(!)

DFS Quiz

¨ In what order would a
DFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
¤ 1, 2, 3, 4, 5, 6, 7, 8
¤ 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
¤ 1, 2, 5, 3, 6, 4, 7, 8
¤ 1, 2, 5, 6, 3, 7, 4, 8

12

1

7

2

5

3 4

6 8

Depth-First Search in Java

Eclipse!

14

/** Visit all nodes reachable on
unvisited paths from u. */
public static void dfs(int u) {

Stack s= new Stack
s.push(u);
while () {

u= s.pop();
if (u not visited) {

visit u;
for each edge (u, v):

s.push(v);
}

}
}

Depth-First Search Iteratively
15

s is not empty

1

7

2

5

3

4

6
8

1Stack:

1

2
5
7

3

8

2 3

57

8

Intuition: Visit all vertices that are reachable along unvisited paths
from the current node.

Breadth-First Search
16

Intuition: Iteratively process the graph in "layers" moving further
away from the source node.

1

7

2

5

3

4

6

8

1 2 3

57

8

BFS Quiz

¨ In what order would a
BFS visit the vertices of
this graph? Break ties by
visiting the lower-
numbered vertex first.
¤ 1, 2, 3, 4, 5, 6, 7, 8
¤ 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
¤ 1, 2, 5, 3, 6, 4, 7, 8
¤ 1, 2, 5, 6, 3, 7, 4, 8

17

1

7

2

5

3 4

6 8

Breadth-First Search
18

1

7

2

5

3

4

6

8

1

1

752 53 5 8

2 3

57

8

/** Visit all nodes reachable on
unvisited paths from u. */
public static void dfs(int u) {

Stack s= new Stack
s.push(u);
while () {

u= s.pop();
if (u not visited) {

visit u;
for each edge (u, v):

s.push(v);
}

}
}

/** Visit all nodes reachable on
unvisited paths from u. */
public static void bfs(int u) {

Queue q= new Queue
q.add(u);
while (q is not empty) {

u= q.remove();
if (u not visited) {

visit u;
for each (u, v):

q.add(v);
}

}
}

Intuition: Iteratively process the graph in "layers" moving further
away from the source node.

Queue:

Analyzing BFS
19

/** Visit all nodes reachable on
unvisited paths from u. */
public static void bfs(int u) {

Queue q= new Queue
q.add(u);
while (q is not empty) {

u= q.remove();
if (u not visited) {

visit u;
for each (u, v):

q.add(v);
}

}
}

Intuition: Iteratively process the graph in "layers" moving further
away from the source node.

Suppose there are ! vertices that
are reachable along unvisited paths
and " edges:

Worst-case running time? #(! + ")
Worst-case space? #(")

Comparing Search Algorithms

¨ Visits: 1, 2, 3, 5, 7, 8
¨ Time: !(# +%)
¨ Space: !(#)

¨ Visits: 1, 2, 5, 7, 3, 8
¨ Time: !(# +%)
¨ Space: !(%)

DFS BFS

20

1

7

2

5

3

4

6
8

