
1

CS2110. GUIS: Listening to Events

1

Lunch with instructors: Visit pinned Piazza post.

A4 due tonight.
Consider taking course S/U (if allowed) to relieve stress.
Need a letter grade of C- or better to get an S.

Download demo zip file from course website, look at demos
of GUI things: sliders, scroll bars, listening to events, etc. We’ll
update it after today’s lecture.

THESE SLIDES WILL PROBABLY BE
REVISED BEFORE THE LECTURE

2

mainBox

boardBox infoBox

boardBox: vertical Box
row: horizontal Box
Square: Canvas or JPanel
infoBox: vertical Box

row row…

Square … Square Square … Square

JButton
JButton

JButton
JLabel

JLabel
JLabel

pack(): Traverse the tree,
determining the space required
for each component and its
position in the window

Layout Manager for Checkers
game has to process a tree

Checkers.java

3

Listening to events: mouse click, mouse movement
into or out of a window, a keystroke, etc.

• An event is a mouse click, a mouse movement into or out of a
window, a keystroke, etc.

• To be able to �listen to� a kind of event, you have to:

1. Have some class C implement an interface IN that is
connected with the event.

2. In class C, override methods required by interface IN; these
methods are generally called when the event happens.

3. Register an object of class C as a listener for the event. That
object’s methods will be called when event happens.

We show you how to do this for clicks on buttons, clicks on
components, movements into and out of components, and
keystrokes.

4

Anonymous functions
You know about interface
Comparable.

public interface Comparable<T> {
/** Return neg, 0 or pos …*/
int compareTo(T ob);

}

public abstract class Shape implements Comparable {
…
/** Return the area of this shape */
public abstract double area() ;

/** Return neg, 0, or pos … */
public int compareTo(Shape ob) {

…
}

}

In some class:
Shape[] s= …;
…
Arrays.sort(s);

Use an anonymous function
to make this easier!

5

Anonymous functions

You used anonymous functions in A1 to test whether
some statement threw an exception.

The second argument to assertThrows is an anonymous
function with no parameters. Its body calls g.setAdvisor.

assertThrows(AssertionError.class,
() -> {g.setAdvisor1(null);});

6

Anonymous functions
Here is a function:
public int f(Person b, Person c) {

return b.age – c.age;
}

public class Person {
public String name;
public int age;
…

}
Written as an anonymous function

(Person b, Person c) -> b.age – c.age

Anonymous because it does not have a name.

Don’t need keyword return. Can put braces around the
body if it is more than a single expression.
Depending on where it is written, don’t need to put in
types of b, c if the types can be inferred.

2

7

Anonymous functions

public class Person {
public String name;
public int age;
…

}

In some class:
Person p[]= new Person[10];
… code to put in 10 Persons …

/** Sort p on age
Arrays.sort(p, (Person b, Person c) -> b.age – c.age);

/** Sort p in descending order of age
Arrays.sort(p, (b, c) -> c.age – b.age);

When Java compiles these calls, it will eliminate the
anonymous functions and turn it into code that uses
interface Comparable! This is “syntactic sugar”!

We use anonymous functions to listen to button clicks.
8

What is a JButton?
Instance: associated with a “button” on the GUI,

which can be clicked to do something

jb1= new JButton() // jb1 has no text on it
jb2= new JButton(“first”) // jb2 has label “first” on it

jb2.isEnabled() // true iff a click on button can be
// detected

jb2.setEnabled(b); // Set enabled property

jb2.addActionListener(object); // object must have a method,
// which is called when button jb2 clicked (next page)

At least 100 more methods; these are most important

JButton is in package javax.swing

9

Listening to a JButton
1. Implement interface ActionListener:

public class C extends JFrame
implements ActionListener { … }

public interface ActionListener extends … {
/** Called when an action occurs. */
public abstract void actionPerformed(ActionEvent e);

}

So, C must implement actionPerformed, and it will be called
when the button is clicked

10

Listening to a JButton
1. Implement interface ActionListener:

public class C extends JFrame
implements ActionListener { … }

public interface ActionListener extends EventListener {
/** Called when an action occurs. */
public abstract void actionPerformed(ActionEvent e);

}

2. In C override actionPerformed --called when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent e) { … }

11

Listening to a JButton
1. Implement interface ActionListener:

public class C extends JFrame
implements ActionListener { … }

2. In C override actionPerformed --called when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent e) { … }

3. Add an instance of class C an �action listener� for button:
button.addActionListener(this);

Method Jbutton.addActionListener
public void addActionListener(ActionListener l)

But instead, we use an anonymous function!

12

/** USE anonymous function */
class ButtonDemo1 extends JFrame {

/** exactly one of eastB, westB is enabled */
JButton westB= new JButton("west");
JButton eastB= new JButton("east");
public ButtonDemo1(String t) {
super(t);
add(westB, BLayout.WEST);
add(eastB, BLayout, EAST);
westB.setEnabled(false);
eastB.setEnabled(true);

red: listening

blue: placing

Listening to a Button

eastB.addActionListener(
e -> {boolean b= eastB.isEnabled();

eastB.setEnabled(!b);
westB.setEnabled(b);}

);
ButtonDemo1

Add listener to
westB the same way

3

13

/** Save anonymous function in local var*/
class ButtonDemo1 extends JFrame {

/** exactly one of eastB, westB is enabled */
JButton westB= new JButton("west");
JButton eastB= new JButton("east");
public ButtonDemo1(String t) {
super(t);
add(westB, BLayout.WEST);
add(eastB, BLayout, EAST);
westB.setEnabled(false);
eastB.setEnabled(true);

red: listening

blue: placing

Listening to a Button

ActionListener al=
e -> {boolean b= eastB.isEnabled();

eastB.setEnabled(!b);
westB.setEnabled(b);};

ButtonDemo1

eastB.addActionListener(al);
westB.addActionListener(al);
pack(); setVisible(true);

14

A JPanel that is painted

• The JFrame has a JPanel in its CENTER
and a �reset� button in its SOUTH.
• The JPanel has a horizontal box b, which contains
two vertical Boxes.

• Each vertical Box contains two instances of class Square.
• Click a Square that has no pink circle, and a pink circle is drawn.

Click a square that has a pink circle, and the pink circle
disappears.
Click the rest button and all pink circles disappear.

• This GUI has to listen to:
(1) a click on Button reset
(2) a click on a Square (a Box)These are different kinds of
events, and they need
different listener methods

MouseDemo2

How painting works

15

JPanel@25c7

paint(Graphics g) {…}
repaint() {paint(gr)}

JPanelgr
Graphics

Square

Class Graphics has methods
for drawing (painting) on the
JPanel. We’ll look at them
soon.

Override paint to draw on the
JPanel paint(Graphics g) {…}

Whenever you want to call
paint to repaint the Jpanel,
call repaint()

16

/** Instance: JPanel of size (WIDTH, HEIGHT).
Green or red: */

public class Square extends JPanel {
public static final int HEIGHT= 70;
public static final intWIDTH= 70;
private int x, y; // Panel is at (x, y)
private boolean hasDisk= false;
/** Const: square at (x, y). Red/green? Parity of x+y. */
public Square(int x, int y) {
this.x= x; this.y= y;
setPreferredSize(newDimension(WIDTH, HEIGHT));

}
/** Complement the "has pink disk" property */
public void complementDisk() {

hasDisk= ! hasDisk;
repaint(); // Ask the system to repaint the square

}

Class
Square

continued on later

17

Class Graphics
An object of abstract class Graphics has methods to draw on a

component (e.g. on a JPanel, or canvas).

Major methods:
drawString(“abc”, 20, 30); drawLine(x1, y1, x2, y2);
drawRect(x, y, width, height); fillRect(x, y, width, height);
drawOval(x, y, width, height); fillOval(x, y, width, height);
setColor(Color.red); getColor()
getFont() setFont(Font f);
More methods

Graphics is in package java.awt

You won’t create an object of Graphics; you will be
given one to use when you want to paint a component

18

Class
Square

/** Remove pink disk
(if present) */

public void clearDisk() {
hasDisk= false;
// Ask system to
// repaint square
repaint();

}

continuation of class Square

/** Paint this square using g. System calls
paint whenever square has to be redrawn.*/

public void paint(Graphics g) {
if ((x+y)%2 == 0) g.setColor(Color.green);
else g.setColor(Color.red);

g.fillRect(0, 0, WIDTH-1, HEIGHT-1);

if (hasDisk) {
g.setColor(Color.pink);
g.fillOval(7, 7, WIDTH-14, HEIGHT-14);

}

g.setColor(Color.black);
g.drawRect(0, 0, WIDTH-1,HEIGHT-1);
g.drawString("("+x+", "+y+")", 10, 5+HEIGHT/2);

}
}

4

19

Listen to mouse event
(click, press, release, enter, leave on a component)

public interfaceMouseListener {
voidmouseClicked(MouseEvent e);
voidmouseEntered(MouseEvent e);
voidmouseExited(MouseEvent e);
voidmousePressed(MouseEvent e);
voidmouseReleased(MouseEvent e);

}

In package java.awt.event

Having to write all of these in a class that implements
MouseListener, even though you don’t want to use all
of them, can be a pain. So, a class is provided that
implements them in a painless way.

20

Listen to mouse event
(click, press, release, enter, leave on a component)

public class MouseInputAdaptor
implements MouseListener, MouseInputListener {

public void mouseClicked(MouseEvent e) {}
public voidmouseEntered(MouseEvent e) {}
public voidmouseExited(MouseEvent e) {}
public voidmousePressed(MouseEvent e) {}
public voidmouseReleased(MouseEvent e) {}
… others …

}

In package java.swing.event

So, just write a subclass of MouseInputAdaptor and
override only the methods appropriate for the application

MouseEvents

Javax.swing.event.MouseInputAdapter
implements MouseListener

21

MouseDemo2() { …

…
}

MouseDemo2

a2

…
JFrame

a1me …b00 …b01

b00.addMouseListener(me);

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

MIA
a1

mouseClicked() {

…

}

MouseEvents

MouseListener

22

A class that listens to a
mouseclick in a Square

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

/** Contains a method that responds to a
mouse click in a Square */

public class MouseEvents
extends MouseInputAdapter {

// Complement "has pink disk" property
public void mouseClicked(MouseEvent e) {

Object ob= e.getSource();
if (ob instanceof Square) {

((Square)ob).complementDisk();
}

}
}

This class has several methods
(that do nothing) to process

mouse events:
mouse click
mouse press
mouse release
mouse enters component
mouse leaves component
mouse dragged beginning in
component

Our class overrides only the method that processes mouse clicks

red: listening

blue: placing

23

public classMD2 extends Jframe {

Box b= new Box(…X_AXIS);
Box leftC= new Box(…Y_AXIS);
Square b00, b01= new squares;
Box riteC= new Box(..Y_AXIS);
Square b10, b01= new squares;
JButton jb= new JButton("reset");

/** Constructor: … */
publicMouseDemo2() {
super(“MouseDemo2”);
place components in JFrame;
pack, make unresizeable, visible;

jb.addActionListener(
e -> clearDisks(e));

b00.addMouseListener(me);
b01.addMouseListener(me);
b10.addMouseListener(me);
b11.addMouseListener(me);

}

red: listening

blue: placing

public void clearDisks(
ActionEvent e) {

call clearDisk() for
b00, b01, b10, b11

}

MouseEvents me=
newMouseEvents();

MouseDemo2
24

Listening to the keyboard
import java.awt.*; import java.awt.event.*; import javax.swing.*;

public class AllCaps extends KeyAdapter {
JFrame capsFrame= new JFrame();
JLabel capsLabel= new JLabel();

public AllCaps() {
capsLabel.setHorizontalAlignment(SwingConstants.CENTER);
capsLabel.setText(":)");
capsFrame.setSize(200,200);
Container c= capsFrame.getContentPane();
c.add(capsLabel);
capsFrame.addKeyListener(this);
capsFrame.show();

}

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("'" + typedChar + "'").toUpperCase());

}
}

1. Extend this class.

2. Override this method.
It is called when a key
stroke is detected.

3. Add this instance as a
key listener for the frame

red: listening

blue: placing

5

public class BDemo3 extends JFrame {
private JButton wB, eB …;

public ButtonDemo3() {
Add buttons to JFrame, …
wB.addActionListener(this);
eB.addActionListener(new BeListener());

}

public void disableE(ActionEvent e) {
eB.setEnabled(false); wB.setEnabled(true);

}

public void disableW(ActionEvent e) {
eB.setEnabled(true); wB.setEnabled(false);

}

}

}
25

Have a different
listener for each

button

ButtonDemo3

ANONYMOUS CLASS

You will see anonymous classes in A5 and other GUI programs

Use sparingly, and only when the anonymous class
has 1 or 2 methods in it,

because the syntax is ugly, complex, hard to understand.

The last two slides of this ppt show you how to eliminate
BeListener by introducing an anonymous class.

You do not have to master this material

26

Have a class for which only one object is created?
Use an anonymous class.
Use sparingly, and only when the anonymous class has 1 or 2 methods
in it, because the syntax is ugly, complex, hard to understand.

public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt …;

public ButtonDemo3() { …
eButt.addActionListener(new BeListener());

}

public void actionPerformed(ActionEvent e) { … }
private class BeListener implements ActionListener {

public void actionPerformed(ActionEvent e) { body }
}

}

27

1 object of BeListener created. Ripe for making anonymous

Making class anonymous will replace new BeListener()

eButt.addActionListener(new BeListener ());

private class BeListener implements ActionListener
{ declarations in class }

}

28

Expression that creates object of BeListener

1. Write new

2. Write new ActionListener

2. Use name of interface that
BeListener implements

3. Write new ActionListener ()
3. Put in arguments of

constructor call

4. Write new ActionListener ()
{ declarations in class }

4. Put in class body

5. Replace new BeListener() by new-expression

ANONYMOUS CLASS IN A6.
PaintGUI. setUpMenuBar, fixing item “New”

29

Save new JMenuItem

Fix it so that
control-N
selects this
menu item

new ActionListener() { … } declares an anonymous
class and creates an object of it. The class implements
ActionListener. Purpose: call newAction(e) when
actionPerformed is called

Using an A6 function (only in Java 8!)
PaintGUI. setUpMenuBar, fixing item “New”

30

Save new JMenuItem
Fix it so that
control-N
selects this
menu item

argument e -> { newAction(e);}
of addActionListener is a function that, when called, calls
newAction(e).

6

31

ANONYMOUS CLASS VERSUS FUNCTION CALL
PaintGUI. setUpMenuBar, fixing item “New”

The Java 8 compiler will change this:

newItem.addActionListener(e -> { newAction(e); });

back into this:

newItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

newAction(e);
}

});

and actually change that back into an inner class

