
10/4/18

1

HEAPS & PRIORITY QUEUES
Lecture 13
CS2110 Spring 2018

Announcements

¨ A4 goes out today!
¨ Prelim 1:

¤ regrades are open
¤ a few rubrics have changed

¨ No Recitations next week (Fall Break Mon & Tue)
¨ We’ll spend Fall Break taking care of loose ends

2

Abstract vs concrete data structures

¨ Abstract data structures are interfaces
¤ specify only interface (method names and specs)
¤ not implementation (method bodies, fields, …)

¤ Have multiple possible implementations

¨ Concrete data structures are classes
¤ These are the multiple possible implementations

3

Abstract data structures (the interfaces)
4

Interface definition
List an ordered collection (aka sequence)
Set collection that contains no duplicate elements
Map maps keys to values, no duplicate keys
Stack a last-in-first-out (LIFO) stack of objects
Queue collection for holding elements prior to processing

Priority
Queue later this lecture!

These definitions specify an interface for the user.
How you implement them is up to you!

Abstract data structures made concrete
5

Interface Class (implementation)
List ArrayList, LinkedList
Set HashSet, TreeSet
Map HashMap, TreeMap
Stack can be done with a LinkedList
Queue can be done with a LinkedList

2 classes that both implement List
6

¨ List is the interface (“abstract data type”)
¤ has methods: add, get, remove, …

¨ These 2 classes implement List ("concrete data types"):

Class: ArrayList LinkedList

Backing storage: array chained nodes

add(i, val) O(n) O(n)

add(0, val) O(n) O(1)

add(n, val) O(1) O(1)

get(i) O(1) O(n)

get(0) O(1) O(1)

get(n) O(1) O(1)

10/4/18

2

Priority Queue

Unbounded queue with ordered elements
à data items are Comparable (ties broken arbitrarily)

Priority order: smaller (determined by compareTo())
have higher priority

remove(): remove and return element with highest priority

7

Many uses of priority queues

¨ Event-driven simulation: customers in a line

¨ Collision detection: "next time of contact" for colliding bodies

¨ Graph searching: Dijkstra's algorithm, Prim's algorithm

¨ AI Path Planning: A* search

¨ Statistics: maintain largest M values in a sequence

¨ Operating systems: load balancing, interrupt handling

¨ Discrete optimization: bin packing, scheduling
¨ College: prioritizing assignments for multiple classes.

8

Surface simplification [Garland and Heckbert 1997]

java.util.PriorityQueue<E>
9

interface PriorityQueue<E> {
boolean add(E e); //insert e.
E poll(); //remove/return min elem.
E peek() //return min elem.
void clear() //remove all elems.
boolean contains(E e);
boolean remove(E e);
int size();
Iterator<E> iterator();

}

Priority queues can be maintained as:
10

A list
add() put new element at front – O(1)
poll() must search the list – O(n)
peek() must search the list – O(n)

An ordered list
add() must search the list – O(n)
poll() min element at front – O(1)
peek() O(1)

A red-black tree (we’ll cover later!)
add() must search the tree & rebalance – O(log n)
poll() must search the tree & rebalance – O(log n)
peek() O(log n)

Can we do better?

11

Is a binary tree satisfying 2 properties

1) Completeness. Every level of the tree (except
last) is completely filled, and on last level nodes
are as far left as possible.

A Heap..

Do not confuse with heap memory, where a process dynamically
allocates space–different usage of the word heap.

55

2238

35 1912 21

20 46 10 8

12

Every level (except last)
completely filled.

Nodes on bottom level are
as far left as possible.

Completeness Property

10/4/18

3

missing nodes

13

Not a heap because:

• missing a node on level 2

• bottom level nodes are
not as far left as possible

Completeness Property

55

2238

35 1912

20 4 10 8

14

Is a binary tree satisfying 2 properties

1) Completeness. Every level of the tree (except
last) is completely filled, and on last level nodes
are as far left as possible.

2) Heap Order Invariant.
Max-Heap: every element in tree is <= its parent

Min-Heap: every element in tree is >= its parent

A Heap..

“max on top”

“min on top”

Every element is <= its parent

Note: Bigger elements
can be deeper in the tree!

15

Order Property (max-heap)

55

2238

35 1912 2

20 46 10 18

Heap Quiz #1
16

17

Is a binary tree satisfying 2 properties

1) Completeness. Every level of the tree (except
last) is completely filled. All holes in last level are
all the way to the right.

2) Heap Order Invariant.
Max-Heap: every element in tree is <= its parent

Implements 3 key methods:
1) add(e): add a new element to the heap

2) poll(): delete the max element and returns it

3) peek(): return the max element

A Heap..
18

55

2238

35 1912 2

20 46 10 18 50

1. Put in the new element in a new node (leftmost empty leaf)

Heap: add(e)

10/4/18

4

19

55

2238

35 1912 2

20 46 10 18 5019

5022

50

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time is O(log n)

Heap: add(e)
20

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable

55

Heap: poll()

21

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.

5519

Heap: poll()

19

22

55

38

35 12 2

20 46 10 18

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time is O(log n) 5519

19

19

50

22

Heap: poll()

23

Heap: peek()

50

2238

35 1912 2

20 46 10 18

50

1. Return root value

Time is O(1)

Implementing Heaps
24

public class HeapNode<E> {
private E value;
private HeapNode left;
private HeapNode right;
...

}

10/4/18

5

Implementing Heaps
25

public class Heap<E> {
private E[] heap;
...

}

Numbering the nodes

55

2238

35 1912 21

20 46

Number node starting at
root row by row, left to right

Level-order traversal

0

1 2

3

9

65

7 8

4

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

k=3

2(3)+1 = 7
2(3)+2 = 8

0 1 2 3 4 5 6 7 8 9

Storing a heap in an array

• Store node number i in index i
of array b

• Children of b[k] are b[2k +1]
and b[2k +2]

• Parent of b[k] is b[(k-1)/2]

parent

children

55

2238

35 1912 21

20 46

0

1 2

3

9

65

7 8

4

55 38 22 35 12 19 21 20 6 4
0 1 2 3 4 5 6 7 8 9

/** An instance of a heap */
class Heap<E> {

E[] b= new E[50]; // heap is b[0..n-1]
int n= 0; // heap invariant is true

/** Add e to the heap */
public void add(E e) {

b[n]= e;
n= n + 1;
bubbleUp(n - 1); // given on next slide

}
}

28

add() (assuming there is space)

class Heap<E> {
/** Bubble element #k up to its position.

* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {

// inv: p is parent of k and every elmnt
// except perhaps k is <= its parent
while () {

}
}

29

add(). Remember, heap is in b[0..n-1]

int p= (k-1)/2;

k > 0 && b[k].compareTo(b[p]) > 0
swap(b[k], b[p]);
k= p;
p= (k-1)/2;

/** Remove and return the largest element
* (return null if list is empty) */

public E poll() {
if (n == 0) return null;
E v= b[0]; // largest value at root.
n= n – 1; // move last
b[0]= b[n]; // element to root
bubbleDown(0);
return v;

}

30

poll(). Remember, heap is in b[0..n-1]

10/4/18

6

/** Tree has n node.
* Return index of bigger child of node k

(2k+2 if k >= n) */
public int biggerChild(int k, int n) {

int c= 2*k + 2; // k’s right child
if (c >= n || b[c-1] > b[c])

c= c-1;
return c;

}

31

poll()

/** Bubble root down to its heap position.
Pre: b[0..n-1] is a heap except maybe b[0] */

private void bubbleDown() {

// inv: b[0..n-1] is a heap except maybe b[k] AND
// b[c] is b[k]’s biggest child
while () {

}
}

32

int k= 0;
int c= biggerChild(k, n);

c < n && b[k] < b[c]

swap(b[k], b[c]);
k= c;
c= biggerChild(k, n);

poll()

/** Return largest element
* (return null if list is empty) */

public E poll() {
if (n == 0) return null;
return b[0]; // largest value at root.

}

33

peek(). Remember, heap is in b[0..n-1] Heap Quiz #2
34

HeapSort
35

55 4 12 6 14
0 1 2 3 4

Goal: sort this array in place

HeapSort
36

55 4 12 6 14
0 1 2 3 4

55

124

6 14

0

1 2

3 4

6

4

14
55 4 12614 6

// Make b[0..n-1] into a max-heap (in place)

4 146

6

10/4/18

7

HeapSort
37

0 1 2 3 4
55

124

6 14

0

1 2

3 4

6

4

14

6

4 12614 4

55
614

6
6

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted

for (k= n-1; k > 0; k= k-1) {
b[k]= poll – i.e., take max element out of heap.

}

556 614 55

HeapSort
38

0 1 2 3 4

124

6 14

0

1 2

3 4

6

4

14

6

55 4 12614 4 6

614

6
5514 6

14
4

14

12

4
12 4

6

4

12

1246

6

64

4

4

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted

for (k= n-1; k > 0; k= k-1) {
b[k]= poll – i.e., take max element out of heap.

}

Priority queues as heaps
39

• A heap can be used to implement priority queues

• Note: need a min-heap instead of a max-heap
• Gives better complexity than either ordered or

unordered list implementation:
– add(): O(log n) (n is the size of the heap)

– poll(): O(log n)
– peek(): O(1)

java.util.PriorityQueue<E>
40

interface PriorityQueue<E> { TIME*
boolean add(E e); //insert e. log
void clear(); //remove all elems.
E peek(); //return min elem. constant
E poll(); //remove/return min elem. log
boolean contains(E e); linear
boolean remove(E e); linear
int size(); constant
Iterator<E> iterator();

} *IF implemented with a heap!

What if priority is independent from the value?

Separate priority from value and do this:

add(e, p); //add element e with priority p (a double)

THIS IS EASY!

41

Be able to change priority

change(e, p); //change priority of e to p

THIS IS HARD!

Big question: How do we find e in the heap?

Searching heap takes time proportional to its size! No good!

Once found, change priority and bubble up or down. OKAY

Assignment A4: implement this heap! Use a second data

structure to make change-priority expected log n time

