
13/09/2018

1

CS/ENGRD 2110
FALL 2018
Lecture 6: Consequence of type, casting; function equals
http://courses.cs.cornell.edu/cs2110

Overview references in
2

¨ Quick look at arrays: array

¨ Casting among classes cast, object-casting rule

¨ Operator instanceof

¨ Function getClass

¨ Function equals

¨ compile-time reference rule

Homework: while-loop, for-loop

while (<bool expr>) { … } // syntax

for (int k= 0; k < 200; k= k+1) { … } // example

A2 is due Sunday
3

Everyone should get 100/100 since we gave you all
the test cases you need.

Please look at the pinned Piazza note “Assignment
A2” for information that is not in the handout and
answers to questions.

Before Next Lecture…
4

Follow the tutorial on abstract classes and interfaces,
and watch <13 minutes of videos.

Abstract classes and interfaces

This will prepare you for Thursday’s lecture.

Click these

Classes we work with today
5
class Animal
subclasses Cat and Dog
Put components common to animals in Animal

Object

Animal

Dog Cat

class hierarchy:

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

a1
Animal

Dog
toString()

age

isOlder(Animal)

6

(Object partition is there but not shown)

a0pet1
Cat

a1pet2
Dog

Cat pet1= new Cat(5);
Dog pet2= new Dog(6); Casting6

13/09/2018

2

Casting objects
7

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

You know about casts like:

(int) (5.0 / 7.5)

(double) 6

double d= 5; // automatic cast

Object

Animal

Dog Cat

You can also use casts with class types:

Animal pet1= new Cat(5);

Cat pet2= (Cat) pet1;

A class cast doesn’t change the object. It
just changes the perspective: how it is
viewed!

pet1 null

Animal
pet2 a0

Cat

a0

pet1 “blinders”

age

isOlder(Animal)

Explicit casts: unary prefix operators
8

a0

Animal

Cat
toString()
purr()

5

c a0
Cat

Object
equals() …

Object-casting rule: At runtime, an object
can be cast to the name of any partition
that occurs within it —and to nothing else.
a0 can be cast to Object, Animal, Cat.

An attempt to cast it to anything else
causes an exception

(Cat) c
(Object) c
(Cat) (Animal) (Cat) (Object) c

These casts don’t take any time. The object
does not change. It’s a change of perception.

Implicit upward cast
9

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

a1
Animal

Dog

toString()

age

isOlder(Animal)

6

public class Animal {
/** = "this Animal is older than h" */
public boolean isOlder(Animal h) {
return age > h.age;

}

// pet1 is cast up to class
Animal and stored in h

pet2 a1
Dog

pet1 a0
Cat

h a0
Animal

Cat pet1= new Cat(5);
Dog pet2= new Dog(6);
if (pet2.isOlder(pet1)) {…}

h “blinders”

Components used from h
10

public class Animal {
/** = "this is older than h" */
public boolean isOlder(Animal h) {
return age > h.age;

}

h a0
Animal

h.toString() OK —it’s in class Object partition

h.isOlder(…) OK —it’s in Animal partition

h.purr() ILLEGAL —not in Animal
partition or Object partition

Which toString()
gets called?

See slide 18.

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

h “blinders”

Compile-time reference rule11

Compile-time reference rule (v1)
12

From a variable of type C, you can reference
only methods/fields that are available in class C.
Animal pet1= new Animal(5);
pet1.purr(); a0pet1

Animal

a0
Animal

age

isOlder(Animal)

5

obviously illegal
The compiler will give you an error.

From an Animal variable, can use only methods available in class Animal

see

Checking the legality of pet1.purr(…):

Since pet1 is an Animal, purr must be
declared in Animal or one of its superclasses.

13/09/2018

3

13

From a variable of type C, you can reference
only methods/fields that are available in class C.
Animal pet1= new Cat(5);
pet1.purr(); a0pet1

Animal

still illegal!
The compiler still gives you an error.

From an Animal variable, can use only methods available in class Animal

see

Checking the legality of pet1.purr(…):

Since pet1 is an Animal, purr must be
declared in Animal or one of its superclasses.

Compile-time reference rule (v2)

a0
Animal

CatgetNoise()
toString()
purr()

age

isOlder(Animal)

5

Why would we ever do this?
14

¨ Why would a variable of type Animal ever not
have just an Animal in it?

¨ This is one of the beautiful things about OO
programming!

1. We want to use an Animal method (seen)
2. We want to keep a list of all our pets

¤ Create an array of type Animal!

Animal[] v= new Animal[3];
15

declaration of
array v

v nullCreate array
of 3 elements

a6

Animal[]

0
1
2

null
null
null

Assign value of
new-exp to v

a6

Assign and refer to elements as usual:

v[0]= new Animal(…);
…
a= v[0].getAge();

null null null
0 1 2

v
Sometimes use horizontal
picture of an array:

The type of v is Animal[]
The type of each v[k] is Animal
The type is part of the syntax/grammar of
the language. Known at compile time.

Consequences of a class type
16

a0 null a1v
0 1 2

Animal[] v; // declaration of v
v= new Animal[3]; // initialization of v
v[0]= new Cat(5); // initialization of 1st elem
v[2]= new Dog(6);

Animal objects

A variable’s type:
• Restricts what values it can contain.
• Determines which methods are legal to call on it.

Compile-time reference rule, revisited
17

null null nullv
0 1 2Animal[] v; // declaration of v

v= new Animal[3]; // initialization of v
Cat pet1= new Cat(5); // initialization of pet1
v[0]= pet1; // initialization of 1st elem
v[0].purr(); // should this be allowed?

// will it compile?

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

a0pet1

a0

“v[0] blinders”

Checking the legality of v[0].purr(…):

Since v[0] is an Animal, purr must be
declared in Animal or one of its superclasses.

From an Animal variable, can use only
methods available in class Animal

Animal[] v= new Animal[3];
v[0]= new Cat(5);
v[2]= new Dog(6);
v[0].toString();
v[2].toString();
Which toString()

gets called?

Bottom-up / Overriding rule revisited
18

a0 null a1v
0 1 2

a0

Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

a1

Animal

Dog

toString()

age

isOlder(Animal)

6
Bottom-up /
Overriding rule
says function
toString in Cat
partition

ObjectObject
toString() toString()

13/09/2018

4

Equals19

Example: Point Class
20

public class Point {
public int x;
public int y;

public Point(int x, int y) {
this.x= x;
this.y= y;

}
}

How Object defines equals(x)
21

public boolean equals(Object x) {
return this == x;

}
Point p1= new Point(5,4);
Point p2= p1;

if (p1 == p2) {...} // true?
if (p1.equals(p2)) {...} // true?

Point p3= new Point(5,4);

if (p1 == p3) {...} // true?
if (p1.equals(p3)) {...} // true?

a0p1
Point

a0
Point

x

y

5

4

a0p2
Point

a1
Point

x

y

5

4

a1p3
Point

Using the Point class as defined in previous slide.

Can define equals for your own class!
22

Can I define it any way I like?
https://docs.oracle.com/javase/8/docs/api/java/lan
g/Object.html#equals-java.lang.Object-

Java spec says:
¨ Reflexive
¨ Symmetric
¨ Transitive
(click on the link to see what these are)

How do we define equality for a Point?
23

/** return “obj is a Point and
obj and this have the same x and y fields” */

@Override
public boolean equals(Object obj) { // why Object?

// how can we access the x y fields
// if this is an Object?

}

Use operator instanceof
24

ob instanceof C

true iff ob has a partition named C

a0
Animal

Cat

toString()
purr()

age

isOlder(Animal)

5

h instanceof Object true
h instanceof Animal true
h instanceof Cat true
h instanceof JFrame false

h a0
Animal

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

13/09/2018

5

How do we define equality for a Point?
25

/** return “obj is a Point and
obj and this have the same x and y fields” */

@Override
public boolean equals(Object obj) {
if (!(obj instanceof Point))
return false;

Point p= (Point)obj;
return (x == p.x && y == p.y);

}

Opinions about casting
26

Use of instanceof and down-casts can indicate bad design

DON’T:
if (x instanceof C1)

do thing with (C1) x
else if (x instanceof C2)

do thing with (C2) x
else if (x instanceof C3)

do thing with (C3) x

DO:

x.do()

… where do is overridden in the
classes C1, C2, C3

But how do I implement equals() ?
That requires casting!

Equals in Animal
27

public class Animal {
private int age;
/** return true iff this and obj are of the same class

* and their age fields have same values */
public boolean equals(Object obj) {

// how to check that objects are of the
// same class??

}

a0
Animalage

equals(Object)

5
Use function getClass

28

h.getClass()

Let Cat be the lowest partition of object h
Then h.getClass() == Cat.class

h.getClass() != Animal.class

a0
Animal

Cat
toString()
purr()

age

isOlder(Animal)

5

h a0
Animal

Equals in Animal
29

public class Animal {
private int age;
/** return true iff this and obj are of the same class

* and their age fields have same values */
public boolean equals(Object obj) {

}

a0
Animalage

equals(Object)

5

if (obj == null || getClass() != obj.getClass())
return false;

Animal an= (Animal) obj; // cast obj to Animal!!!!

return age == an.age; // downcast needed to reference age

public class Cat extends Animal {
private boolean likesPeople;
/** return true iff this and ob are of same class

* and age and likesPeople fields have same values*/
public boolean equals(Object obj) {

}
}

Equals in Cat
30

public class Animal {
private int age;
/** return true iff this and ob are of
* same class and their age fields
* have same values */

public boolean equals(Object ob) {...}

if (!super.equals(obj)) return false;

return likesPeople == c1.likesPeople;

a0
Animalage

equals(Object)

5

likesPeople
equals(Object)

Cat

Cat c1= (Cat) obj; // downcast is necessary!

false

