KINGDOM

PHYLUM |

CLASS [MAMMALIA
AT 3 =

ORDER | CARNIVORA

SPECIFIC
EPITHET

Lecture 4: The class hierarchy; static components
http:/ /cs.cornell.edu /courses/cs2110

CS/ENGRD 2110
FALL 2018

Announcements

2 !
7 A1l Due Friday

7 A2 Out Today

Where am 12 Big ideas so far.

Java variables have (L1)
A type is a set of values and operations on them
(int:+, -, *, /, %, etc)
define new types (L2) and define the
contents of each object of the class.
are the operations on objects of that class.

allow obijects to contain data (L3)

Class House

public class House {

private int nBed; // number of bedrooms, >= 0,
private int nBath; // number of bathrooms, in 1..5

/** Constructor: bed is number of bedrooms,
* bath is number of bathrooms

* Prec: bed>=0,0<bath<=5*/
public House(int bed, int bath) {
nBed= bed; nBath= bath;

}

/** Return no. of bedrooms */

public int getNumBed() {
return nBed;

}

Contains other methods!

House

House @af8
nBed 3
nBath]

House(...) getNumBed()

getNumBath() setNumBed(...)

setNumBath(...)

toString()

equals(Obiject)

hashCode()

Class Obiject
5 ——

Class Object

java.lang.Object

public class Object
Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrays, implement the methods of this class.

Since:
JDK1.0

See Also:
Class

Constructor Summary

Constructor and Description

Object()
Method Summary
_ Instance Methods | Concrete Methods
Modifier and Type Method and Description
protected Object clone()
Creates and returns a copy of this object.
boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.
protected void finalize()
Called by the garbage collector on an object when garbage collection determines that there are no more references to the object.
Class<?> getClass()
Returns the runtime class of this Object.
int hashCode()

Returns a hash code value for the object.

Class Object: the superest class of all

public class House extends Object {
private int nBed; // number of bedrooms, >= 0.
private int nBath; // number of bathrooms, in 1..5

Java: Every class that
does not extend
another class extends

/** Constructor: bed is number of bedrooms, class Object.
* bath is number of bathrooms
* Prec: bed>=0,0<bath<=8%/ 'Hoyse@af8

PEIIEEE e [e
} nBath 1

/** Return no. of bedrooms */ House(...) getNumBed()

public int getNumBed() { getNumBath() setNumBed(...)

return nBed;

}

Class Object: the superest class of all

public class House extends Object {
private int nBed; // number of bedrooms, >= 0.
private int nBath; // number of bathrooms, in 1..5

Java: Every class that
does not extend
another class extends

/** Constructor: bed is number of bedrooms, class Obiject.
* bath is number of bathrooms
* Prec: bed>=0,0<bath<=8%/ 'Hoyse@af8

public House(int bed, int bath) {

nBed= bed; nBath= bath; nBed 3 ol
} nBath | 1
/** Return no. of bedrooms */ House(...) getNumBed()
We often omit the Object getNumBath() setNumBed(...)

partition to reduce clutter; we
know that it is always there.

}

Class Object: the superest class of all

public class House extends Object {
private int nBed; // number of bedrooms, >= 0.
private int nBath; // number of bathrooms, in 1..5

Java: Every class that
does not extend
another class extends

/** Constructor: bed is number of bedrooms, class Object.
* bath is number of bathrooms
* Prec: bed >=0,0 <bath<=5*/ House@af8
public House(int bed, int bath) { . Object
nBed= bed; nBath= bath; toString()
) equals(Object) hashCode()
/** Return no. of bedrooms */
We often omit the Object nBed 3 House
partition to reduce clutter; we nBath 1
know that it is always there. House(...) getNumBed()

) getNumBath() setNumBed(...)

Classes can extend other classes We saw this in L2!

/** An instance is a subclass of JFrame */
public class C extends javax.swing.JFrame {

}

C: subclass of JFrame

JFrame: superclass of C

C inherits all methods
that are in a JFrame

object has 3 partitions:
for Object components,
for JFrame components,
for C components

C@666734e

equals() toString()

Obiject

hide() show()

JFrame

setTitle(String) getTitle()
getHeight()
getY()

getWidth()
getX()

setLocation(int, int)

C

Classes can extend other classes

You also saw this in the
tutorial for this week's
recitation

There are subclasses
of Exception for
different types of
exceptions

NFE@?2

Obiject

Throwable

Exception

NumberFormatException

Accessing superclass things

Subclasses are different classes
Public fields and methods can be accessed
Private fields and methods cannot be accessed

Protected fields can be access by subclasses

Keywords:

public class House {
private int nBed; // number of bedrooms, >= 0.
private int nBath; // number of bathrooms, in 1..5

/** Constructor: */

public House(int nBed, int nBath) {
nBed=nBed; // has no effect! this.nBed= nBed,;
nBath=nBath; this.nBath=nBath;

} Inside-out rule shows that

this avoids overshadowed
} field nBed is inaccessible! ®

field names
this evaluates to the name of the object in which it occurs
Makes it possible for an object to access its own name (or pointer)

Example: Referencing a shadowed class field

A Subclass Example

public class House { public class Apt extends House {
private int nBed; // num bedrooms, >= 0 private int floor;

private int nBath; // num bathrooms, in 1.5 private Apt downstairsApt;

/** Constructor: bed is number of bedrooms public Apt(int floor, Apt downstairs) {

* bath is number of bathrooms this. floor= floor:;
* Prec: bed>=0,0<bath<=5*/

public House(int bed, int bath) {
nBed= bed; nBath= bath;

downstairsApt= downstairs;

J
public int getNumBed() {

return nBed;

Overriding methods

Apt@af8
Object defines a method Object
toString() that returns the toString()
name of the object equals(Obiject) hashCode()
Apt@af8
P @ Bed 3 House
nBath 1

Java Convention: Define
toString() 1in any class to return a
representation of an object, giving

House(...) getNumBed()
getNumBath() setNumBed(...)

info about the values in its fields. floor 2 Apt
New definitions of toString() downstairsApt | Apartment@f34
override the definition in Apt(...) isBelow(...)

Object.toString() toString()

Overriding methods

public class Apt{

/** Return a representation of an
Apartment™/
@OQOverride
public String toString() {
return "" +
(getNumBed() + getNumBath()) +

" room apartmenton " +
floor + "th floor";

¥

} a.toString() calls this method

Apt@af8
Object
toString()
equals(Object) hashCode()
Bed 3 House
nBath]

House(...) getNumBed()
getNumBath() setNumBed(...)

floor

2

Apt

upstairsApt

Apt(...)
toString()

Apartment@f34

isBelow(...)

When should you make a subclass?

The inheritance hierarchy should reflect modeling
semantics, not implementation shortcuts

A should extend B if and only if A *is a” B

An elephant is an animal, so Elephant extends Animal
A car is a vehicle, so Car extends Vehicle
An instance of any class is an object, so

AnyClass extends java.lang.Object

Don’t use extends just to get access to protected
fields!

When should you make a subclass?

Which of the following seem like reasonable designs?

Triangle extends Shape { ... }
PHDTester extends PHD { ... }
BankAccount extends CheckingAccount { ... }

When should you make a subclass?

7 Which of the following seem like reasonable
designs?
Triangle extends Shape { ... }

®w Yes! A triangle is a kind of shape.

® No! A PHDTester “tests a” PHD, but itself is not a PHD.

m Nol! A checking account is a kind of bank account; we
likely would prefer:

CheckingAccount extends BankAccount { ... }

Static Methods

Most methods are : every instance
of the class has a copy of the method

There is only one copy of a
There is not a copy in each object.

Make a method static if the

body does not refer to any
field or method in the object.

An Example

| 20
/** returns true if this object is below Apt a”.
Pre: a is not null. */
public Boolean isBelow(Apt a){
return this == a.downstairsApt;

| @
/** returns true if Apt b is below Apt a
Pre: b and ¢ are not null. */

public static boolean isBelow(Apt b, Apt a){
return b == a.downstairsApt;

Referencing a static method

static: there is only one
copy of the method. It is
not in each object

Apt@af Apt@b4
nBed| 2 | Housed nBed|?2 | House
nBath|] nBath| 1
floor | 4| [Apt| floor |4 | |Apt

dstrs Apt@af dstrs Apt@af
isBelow(Apt) isBelow(Apt)

isBelow(Apt, Apt)

Container for Apartment

contains: objects, static components
{ a= new Apt(...);
b= new Apt(...);
1f (a.isBelow(b)) ...
1f (Apt.isBelow(a, b)) ...

Good example of static methods

java.lang.Math

Or find it by googling
Java 8 Math

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Static Fields

There is only one copy of a
There is not a copy in each object.

There is only one copy of a
There is not a copy in each object.

What are static fields good for?

Use of static variables:

Maintain info about created obijects

public class Apt extends House {

public static int numApt; // number of Apartments created

/** Constructor: */
public Apt(...) {

numApt= numApt + 1;

To have numApt contain the
number of objects of class
Apartment that have been
created, simply increment it in
constructors.

Apt@af Apt@b4
nBed| 2 H nBed| 2 H
nBath|] nBath|]
floor | 4| [Apt| floor |4 | |Apt

dstrs Apt@af dstrs Apt@af

numApt

2

numAps stored in the Container

for Apartment

To access: Apartment.numApt

Class java.awt.Color uses static variables

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each

of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static final Color black= ...;
public static final Color blue= ...;
public static final Color cyan= new Color(0, 255, 255);
public static final Color darkGray= ...;

public static final Color gray=...;

public static final Color green=...;

Uses of static variables:
Implement the singleton pattern

Only one WhiteHouse can ever exist.
public class WhiteHouse extends House{
private static final WhiteHouse instance= new WhiteHouse();

private WhiteHouse() {} // ... constructor

public static WhiteHouse getlnstance() {
return instance; WhiteHouse @x3k3

}

// ... methods

WH

instance |WhiteHouse @x3k3

Container for WhiteHouse

