
CS/ENGRD 2110
FALL 2018

Lecture 2: Objects and classes in Java
http://courses.cs.cornell.edu/cs2110

1

Homework HW1

2

The answers you handed in at the end of lecture 1 showed mass
confusion! Perhaps 80% of you weren’t sure what to write. This was
not graded! It was only to help us and you assess the situation.

Doing HW1 will eliminate the confusion. Piazza note @34, (find a
link to it in the pinned Piazza Recitation/Homework note.)

Evaluation, Execution, Syntax, Semantics.

Presenting an algorithm in English (2.5 minutes).

Executing the assignment statement (2.5 minutes).

Do HW1 and submit on the CMS

PPT slides, JavaHyperText.

3

CMS. Visit course webpage, click “Links”, then “CMS for 2110”.

Download ppt slides the evening before each lecture, have them
available in class. Please don’t ask questions on the piazza about
that material the day before the lecture!

Got a Java question? See first if it’s answered on JavaHyperText

Try Java out in https://tryjshell.org

4

On Piazza note @29, Preston Rozwood talked about JShell. Problem: You
need Java 9 to use it. Maybe next semester we’ll switch to 9.

Eric Wang then suggested using

https://tryjshell.org

Where you can type in Java snippets and have them executed/evaluated.
It’s not as easy to use as DrJava, but it can help in some cases.
You don’t need Java version 9 to use it. It’s not using the Java on your
computer.

Thank, Preston and Eric!

https://tryjshell.org/

Java OO (Object Orientation)

5

Python and Matlab have objects and classes.
Strong-typing nature of Java changes how OO is done and how
useful it is. Put aside your previous experience with OO (if any).
This lecture:

First: describe objects, demoing their creation and use.

Second: Show you a class definition, a blueprint for objects, and
how it contains definitions of methods (functions and procedures)
that appear in each object of the class.

Third: Talk about keyword null.

Fourth: Introduce Exceptions

Homework
6

1. Study material of this lecture.
2. Visit JavaHyperText, click on Code Style. Study

3. Documentation
3.1 Kinds of comments
3.2 Don’t over-comment
3.4 Method specifications

3.4.1 Precondition and postcondition

3. Spend a few minutes perusing slides for lecture 3; bring them
to lecture 3.

Java OO
7

References to JavaHyperText entries
Objects: object

Calling methods: method call

Class definition: class

public, private: public private
method

Parameter vs argument:
parameter, argument

Inside-out rule

Fields of an object
may be mentioned.
We cover these in
next lecture

Function: a method that
returns a result.
Procedure: method that
does not return a result,
void method.

Methods may have parameters
Method calls may have arguments

Drawing an object of class javax.swing.JFrame
8

Object is associated with a window on your computer monitor

JFrame@25c7

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

Name of object, giving
class name and its
memory location
(hexadecimal).
Java creates name
when it creates object

Function: returns a value; call on it is an expression
Procedure: does not return a value; call on it is a statement

Object contains methods (functions and procedures), which can be
called to operate on the object

Evaluation of new-expression creates an object
9

Evaluation of

new javax.swing.JFrame()

creates an object and gives as its value the name of the object

JFrame@25c7

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

If evaluation creates this object, value of expression is

JFrame@25c7

JFrame@25c7

2 + 3 + 4

9

A class variable contains the name of an object
10

Type JFrame: Names of objects of class JFrame

JFrame@25c7

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

h ?
JFrame

javax.swing.JFrame h;
h= new javax.swing.JFrame();

If evaluation of new-exp creates
the object shown, name of object
is stored in h

JFrame@25c7

Consequence: a class variable
contains not an object but

name of an object, pointer to
it. Objects are referenced

indirectly.

A class variable contains the name of an object
11

If variable h contains the name of an object, you can call
methods of the object using dot-notation:

JFrame@25c7

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

h ?
JFrame

Procedure calls: h.show(); h.setTitle(“this is a title”);

Function calls: h.getX() h.getX() + h.getWidth()

JFrame@25c7

x= y;
g= h;

Class definition: a blueprint for objects of the class
12

Class definition: Describes format of an object (instance) of the class.

/** description of what the class is for */

public class C {

}

This is a comment

declarations of methods (in any order)
Access modifier
public means C can
be used anywhere

Class definition C goes in its own file named
C.java

On your hard drive, have separate directory for each Java
project you write; put all class definitions for program in that
directory. You’ll see this when we demo.

First class definition
13

/** An instance (object of the class) has (almost) no methods */
public class C {

}

C@25c7

C

k ?
C

C@25c7
Then, execution of

C k;
k= new C();

creates object shown to right
and stores its name in k

Class extends (is a subclass of) JFrame
14

/** An instance is a subclass of JFrame */
public class C extends javax.swing.JFrame {

}

C: subclass of JFrame
JFrame: superclass of C
C inherits all methods
that are in a JFrame

C@6667

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() …

JFrame

C
Object has 2 partitions:
one for JFrame methods,
one for C methods Easy re-use of program part!

Class definition with a function definition
15

/** An instance is a subclass of JFrame with a function area */
public class C extends javax.swing.JFrame {

/** Return area of window */
public int area() {

return getWidth() * getHeight();
}

}

C@6667

…
getWidth() getHeight()

area()

JFrame

C

Spec, as a comment

You know it is a function
because it has a return type

Function calls automatically
call functions that are in the
object

Inside-out rule for finding declaration
16

/** An instance … */
public class C extends javax.swing.JFrame {

/** Return area of window */
public int area() {

return getWidth() * getHeight();
}

}
C@6667

getWidth()
getHeight() …

area() {
return getWidth() * getHeight();

}

JFrame

C

The whole
method is in

the object

To what declaration does a
name refer? Use inside-out
rule:
Look first in method body, starting
from name and moving out; then
look at parameters; then look
outside method in the object.

Inside-out rule for finding declaration
17

/** An instance … */
public class C extends …JFrame {

/** Return area of window */
public int area() {

return getWidth() * getHeight();
}

}
C@6667

getWidth()
getHeight() …

area() {
return getWidth() * getHeight();

}

JFrame

C

C@2abc
getWidth()
getHeight() …

area() {
return getWidth() * getHeight();

}

JFrame

C

Function area: in each object.
getWidth() calls function
getWidth in the object in
which it appears.

Class definition with a procedure definition
18

/** An instance is a JFrame with more methods */
public class C extends javax.swing.JFrame {

public int area() {
return getWidth() * getHeight();

}

/** Set width of window to its height */
public void setWtoH() {

setSize(getHeight(), getHeight());
}

}

C@6667

…
setSize(int, int)
getWidth() getHeight()

area()
setWtoH()

JFrame

C
It is a procedure
because it has void
instead of return type

Call on
procedure
setSize

Using an object of class Date
19

/** An instance is a JFrame with more methods */
public class C extends javax.swing.JFrame {

…
/** Put the date and time in the title */
public void setTitleToDate() {

}
}

C@6667

…
setSize(int, int)
setTitle(String)

area() { }
setWtoH() setTitleToDate

JFrame

C

An object of class java.util.Date
contains the date and time at
which it was created.
It has a function toString(), which
yields the data as a String.

setTitle((new java.util.Date()).toString());

About null
20

v1 C@16

v2 null

C@16

getName()
C

null denotes the absence of a name.

v2.getName() is a mistake! Program stops with a
NullPointerException

You can write assignments like: v1= null;

and expressions like: v1 == null

Intro to Exceptions
21

AssertionError@2
Throwable

Error

AssertionError

7 int x= 5;
8 System.out.println("x is now "+x);
9 assert x== 6;

When the assert statement is executed
and x is not 6, an object of class
AssertionError is created and
“thrown”. It contains info needed to
print out a nice message.

java.lang.AssertionError
at A0.main(A0.java:9)

Intro to Exceptions
22

06 m();

When 5/0 is evaluated, an object of
class ArithmeticException is created
and “thrown”. It contains info needed
to print out a nice message.

14 public static void m() {
15 int y= 5/0;
16 }

Exception in thread "main”
java.lang.ArithmeticException: / by zero
at A0.m(A0.java:15)
at A0.main(A0.java:6)

where it occurred
where m was called

ArithmeticException@4
Throwable

Exception

RuntimeException

ArithmeticException

Intro to Exceptions
23

Throwable
Error

IOException
AssertionException
…

Exception
RuntimeException

ArithmeticException
NullPointerException
IllegalArgumentException
…

You will learn all about
exceptions in next
week’s recitation!

