
CS2110 Preparing for Prelim 2 Thursday, 15 November 2018	

Where and When? Thurs, 15 November
5:30-7:00. TBA: … ..

7:30-9:00. TBA: ….

Review session: Sun, 11 Nov., 1-3pm, Hollister B14

Read the Exams page of the course website, as with P1,
for info on conflicts and completing P2Conflict, if nec-
essary, by the end of Thurs, 08 April.

 cs.cornell.edu/courses/CS2110/2018fa/exams.html.

To prepare:
(1) Practice writing programs (in Eclipse and by hand),
(2) Study JavaHyperText entry “study/work habits”,
(3) Memorize definitions/principles,
(4) Study lecture slides,
(5) Attempt past prelims on the course website, and
(6) Consult a staff member about any material you don’t
understand.

The overall length and balance of the prelim will be
similar to past prelim 2s, but it covers only topics pre-
sented on this page. Ignore past prelim-2 questions that
touch on topics that are not listed below.

Topics that will NOT be covered: Parsing, Anony-
mous functions (lambdas).

Topics to be covered on Prelim 2

The test covers material taught through lecture 21 (6
Nov 2018)

0. Everything needed for Prelim 1. Read the Prelim-1
study guide.

1. Loops and recursion. Use of invariants to develop
loops and argue about their correctness. We used these
on searching/sorting algorithms and graph algorithms.

2. Algorithmic complexity. Big-O complexity notation
and the associated definitions. Understand how to derive
a big-O complexity formula for an algorithm, best-
case/worst-case/average complexity, the notion that
what this counts is some sort of "operation we care
about" and not every line of code, etc.

3. Searching and sorting. Know these algorithms: Lin-
ear search, binary search, insertion sort, selection sort,
mergesort, partition algorithm of quicksort, quicksort,
heapsort. “Knowing” means: being able to develop them
given their specifications, using high-level statements
for the parts that massage the array (e.g. “merge sorted
partitions b[h..k] and b[k+1..n]”). If you don’t under-
stand what we mean, look at the appropriate lecture
notes. Know the average- and worst-case complexity of
these algorithms.

4. Interfaces. Review the interface lecture materials and
make sure you understand the ideas. Know how a type
can be defined using an interface and the relationship to

abstract data types. Specifically included are interfaces
Comparable, Iterator, and Iterable and how they are
used.

5. Java Collections framework. Be familiar with the
standard operations that are supported by common data
structures implementing Collection<T>, List<T>,
Set<T>, Map<K,V>, ArrayList<T>,
HashMap<K, V>, etc.

6. Trees: Trees, binary trees, data structures for binary
and non-binary trees, BSTs. Expression trees and their
traversals: preorder, inorder, postorder. Red-black trees,
tree rotations, AVL trees, and parsing are not covered.

7. Heaps. Understand min-heaps and max-heaps, how a
min-heap can be used to implement a priority queue,
and how a max-heap is used in heapsort.

8. Graphs. Kinds of graphs (e.g. planar, sparse, dense).
Adjacency matrix vs adjacency list. DFS and BFS, topo-
logical ordering, Dijkstra’s shortest-path algorithm,
spanning trees. Be able to write DFS and BFS given a
specification. Expect questions that involve graphs: be
able to tell us which algorithm is the best choice for
solving a problem, precisely what that algorithm does,
why it would solve a problem, and how costly it might
be.

9. Hashing. The two kinds of hashing: Open addressing
and chaining. Hash functions. Load factor. Expected
and worst case times for operations, and so forth.

10. GUIs. We will not ask you to write GUI programs.
We may ask you to read and understand small sections
of code that place components using the usual (JFrame,
JPanel, Grid, Box, and layout managers. Know the three
steps required to listen to events (See Piazza note
@660).

11. Basics of enums: How to declare a simple enum.

12. Keep in mind the following:

A. Being able to write correct Java code is critical.
We will continue to have coding questions. We plan to
grade them with a bit more insistence on correct Java.
You may lose credit for code that is long, is inefficient,
or reveals a poor grasp of Java features.

B. We expect you to know Java and our coding
guidelines —not just the bits and pieces of Java used on
slides in class. If there is some aspect of Java that wor-
ries you, read the appropriate entry in the JavaHyper-
Text, study our Code style guidelines in JavaHyperText.

C. Use the powerful built-in Java tools. We give max-
imum credit for concise, elegant code that doesn’t rein-
vent the wheel. Know how to use standard Java classes
like ArrayList, TreeSet, and HashMap and the basic
methods available for Collections, arrays, Strings, etc.

