
Name: NetID:

Final exam

CS 2110, December 15, 2016, 9:00AM

Question Short Trie Loop Exp Rec Gen Span Mon BigO Data Total

Max 20 7 9 10 9 9 8 10 10 8 100

Score

Grader

The exam is closed book and closed notes. Do not begin until instructed.

You have 150 minutes. Good luck!

Write your name and Cornell NetID at the top of every page! There are 10 questions
on 14 numbered pages, front and back. Check that you have all the pages. When you
hand in your exam, make sure your pages are still stapled together. If not, please use our
stapler to reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might
want to write code on scrap paper first and then copy it to the exam so that we can make
sense of what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incorrect.
You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages that
must be printed for the exam. In others, code has been obfuscated to make the problem
more difficult. This does not mean that it’s good style.

Academic Integrity Statement: I pledge that I have neither given nor received any
unauthorized aid on this exam.

(signature)

1 of 14

Name: NetID:

1. Short Questions [20 pts]

(a) [3 pts] Hash tables. Consider hashing using linear probing. Write the definition
of load factor.

(b) [4 pts] Exceptions.

Consider the method given below. Suppose the try-block throws an ArithmeticExcep-
tion, so the catch-block is executed. Write down how execution proceeds in two cases
(1) The catch-block throws another ArithmeticException and (2) the catch-block does
not throw another exception.

public void m() {
try { ... }
catch (ArithmeticException e) { ... }
...

}

(c) [3 pts] Local variables.

Consider method m declared below. To the right of the method, write down when
during execution of the call m(5) space is allocated for variable x.

public static int m(int p) {
p= Math.abs(p);
while (p > 0) {

int x= 2∗p;

return x;
}

}

2 of 14

Name: NetID:

(d) [3 pts] Function equals. Let C be a class. The fields of an object of class C are
not changed except by the constructor. Describe a situation in which the following
expression is false.

(new C()).equals(new C())

(e) [3 pts] Generics. Give an example of what could go wrong if Java allowed
LinkedList<Integer> to be a subtype of LinkedList<Object>

(f) [4 pts] Constructors.

• Write the constructor that Java inserts in class C if one is not declared in C.

• Write the statement that Java inserts as the first statement of a constructor if the
first statement is not a call on another constructor.

3 of 14

Name: NetID:

2. Tries vs BSTs [7 pts]

The trie1 data structure is a tree that maintains a sorted set of strings. Each edge in a trie
is labeled with a single character. To look up a string, begin at the root and follow the
path of characters in the string. Each node contains a boolean value to indicate whether
the path from the root to that node represents a complete string that is in the set, and
not just a partial prefix. This allows a word that is a substring of another to be in the
set, for example, ”in” and ”inn” shown below. Here, the black nodes represent words in
the set {"in", "inn", "tea", "ten", "to"}.

n

n

i

a n

e o

t

Assume that words can contain only the 26 letters a..z. Assume that the child of a node
corresponding to a letter can be referenced in constant time (the child is either a node or
null, in case the child is empty).

(a) [4 pts] Complexity of tries. Consider a trie with n strings of maximum length m.
What is the tightest Big-O worst-case complexity (in terms of n and m) of determining
whether the trie contains a given word?

(b) [3 pts] Complexity of a BST containing strings. Assume strings use only the
characters in a..z, as in the previous question. Consider a balanced BST containing n
strings of maximum length m. What is the tightest Big-O worst-case complexity (in
terms of n and m) of determining whether the BST contains a given word?

1from retrieval, a pun on tree

4 of 14

Name: NetID:

3. Loops [9 pts]

Given is n > 0 and array segment b[0..n], which contains a sorted list of integers, pos-
sibly containing duplicates. We want to place the set of integers in b at the beginning
of b; the rest of b[0..n] remains unchanged. For example, below is one possibility for
b[0..n], with 5 distinct values, and below it is the result of the algorithm. At the end,
variable k will contain the size of the set.

[2, 5, 5, 5, 7, 7, 8, 8, 9]

[2, 5, 7, 8, 9, 7, 8, 8, 9] k = 5

------------- ----------

set unchanged

Here are the precondition, postcondition, and an invariant derived from them, using
x[0..n] to denote the original list of values in b[0..n]. dups stands for duplicates.

bPre Q:
0 n

x[0..n], which is sorted

bPost R:

0 k n

x[k..n]x[0..n] with no dups

bInv P:

0 k h n

x[h..n]x[0..h-1] with no dups x[k..h-1]

(a) [2 pts] Initialization

To the right, write the initialization that
truthifies the invariant.

(b) [2 pts] Termination

To the right, write the condition B such
that B and P imply R.
Do not write “while” and things like
that. Just write the condition.

(c) [1 pt] Progress

To the right, write a statement that
makes progress toward termination.

(d) [4 pts] Maintain invariant

To the right, write a statement that,
when executed before the statement
written in c), will ensure that the
invariant is true after the statement
in (c) is executed.

5 of 14

Name: NetID:

4. Expressions [10 pts]

To represent expressions, you have built the classes listed on page 7, which you may
remove from the exam booklet. For simplicity, we are not representing || expressions.

(a) [3 pts] Write a Java expression using these classes that represents this tree:

&&

!

true

&&

true false

Expr e = new

(b) [7 pts] Write a visitor class that, when applied, returns a String containing a preorder
traversal of an expression. For example, e.apply(new PreorderVisitor()) should return
”&& ! T && T F ” (where e is the expression from part (a)). Hint: making the code
below compile will get you started.

public class PreorderVisitor implements ExprVisitor<String> {

}

6 of 14

Name: NetID:

/∗∗ Represents a boolean expression. ∗/
interface Expr {

/∗∗ apply the visitor to this object and return what it returns. ∗/
<R> R apply (ExprVisitor<R> visitor);

}

/∗∗ Represents an operation to be performed on an Expr
∗ @param R is the return type of the operation
∗/

interface ExprVisitor<R> {
public R visitAnd(And a);
public R visitNot(Not e);
public R visitConstant(Constant c);

}

/∗∗ Represents the expression ”left && right” ∗/
class And implements Expr {

public Expr left, right;
public And(Expr left, Expr right) { this.left = left; this.right = right; }
public @Override <R> R apply(ExprVisitor<R> visitor) {

return visitor.visitAnd(this);
}

}

/∗∗ Represents the expression ’! child’ ∗/
class Not implements Expr {

public Expr child;
public Not(Expr child) { this.child = child; }
public @Override <R> R apply(ExprVisitor<R> visitor) {

return visitor.visitNot(this);
}

}

/∗∗ Represents the expression ’T’ or ’F’ ∗/
class Constant implements Expr {

public boolean value; // true for ’T’; false for ’F’
public Constant(boolean value) { this.value = value; }
public @Override <R> R apply(ExprVisitor<R> visitor) {

return visitor.visitConstant(this);
}

}

7 of 14

Name: NetID:

This page intentionally left blank

8 of 14

Name: NetID:

5. Recursion [9 pts]

Consider a binary search tree whose values are integers and whose nodes are objects of
class BST:

public class BST {
private int value; // Value in this node
private BST left; // Left child, or null if none
private BST right; // Right child, or null if none
// additional code for methods add, lookup, etc.

(a) [3 pts] Complete function size:

/∗∗ Return the number of nodes in t (0 if t is null). ∗/
public static int size(BST t) {

}

(b) [6 pts] Complete function numBigger, doing only as much computation as necessary:

/∗∗ Return the number of values in t
∗ that are greater than v (0 if t is null). ∗/

public static int numBigger(BST t, int v) {

}

9 of 14

Name: NetID:

6. Generics [9 pts] Consider the following class hierarchy:

interface Flier { void fly(); }

abstract class Animal {
void getWeight() { ... }
abstract String getName();

}

abstract class Bird extends Animal
implements Flier { }

interface List<E> {
E get(int i);
void add(E e);
int size();

}

class Mammal extends Animal { ... }
class Dog extends Mammal { ... }
class Parrot extends Bird { ... }

(a) [2 pts] What methods must Parrot implement?

(b) [1 pt] What methods must Dog implement?

(c) [3 pts] What is the most general type for flock in the following method (i.e. the one
that will allow it to be called on as many different types as possible but still compile).

public void migrate(List< > flock) {
for (int i = 0; i < flock.size(); i++)

flock.get(i).fly();
}

(d) [3 pts] What is the most general type for herd in the following method?

public void populate(List< > herd) {
herd.add(new Mammal());

}

10 of 14

Name: NetID:

7. Graphs [8 pts]

(a) [4 pts] Execute Kruskal’s algorithm on the following graph. Fill in the edges as you

select them and number them: write 1 next to the first edge you select, 2 next to
the second, and so on. If the algorithm requires a starting node, use a.

a

b

c

d e

f

g

h

1

2

3

4

5

6

7

8

9

10

1112

(b) [4 pts] Similarly, execute Prim’s algorithm on the following graph. If the algorithm
requires a starting node, use a.

a

b

c

d e

f

g

h

1

2

3

4

5

6

7

8

9

10

1112

11 of 14

Name: NetID:

8. Monitors [10 pts]

Complete the following implementation of a Monitor, which maintains two counters:

/∗∗ An XYMonitor maintains two counters, x and y, and ensures that x < y. ∗/
class XYMonitor {

/∗ FILL IN
∗
∗/

private int x, y;

/∗∗ Constructor: an instance with counters x and y. Precondition: x < y ∗/
public XYMonitor(int x, int y) { this.x = x; this.y = y; }

/∗∗ Block until it is safe to increment counter x, then increment x ∗/
public synchronized void incrementX() throws InterruptedException {

// FILL IN

}

/∗∗ Decrement counter x. ∗/
public synchronized void decrementX() {

// FILL IN

}

/∗∗ Increment counter y. ∗/
public synchronized void incrementY() {

// FILL IN

}

/∗∗ Block until it is safe to decrement counter y, then decrement y. ∗/
public synchronized void decrementY() throws InterruptedException {

// FILL IN

}
}

12 of 14

Name: NetID:

9. Complexity [10 pts] Consider the worst-case execution of the algorithm below on a
graph with N vertices and E edges.

(a) [6 pts] Next to each line, write an asymptotic bound for the total time it takes
to execute that line, assuming first that G is stored as an adjacency list and second
that it is stored as an adjacency matrix. Write your answers in terms of E and N .
Assume that each line is implemented as efficiently as is possible. The first two lines
are completed for you.

total asymptotic run time

(adj. list) (adj. matrix)

O(N) O(N) for each vertex v

O(N) O(N) print v

copy the vertices into an array b

sort b

for each entry u in the array

print u

for each neighbor v of u

find the index i of v in b

print i

(b) [2 pts] What is the total asymptotic running time for each?

Adjacency list: Adjacency matrix:

(c) [2 pts] Based on your answer to (b), which representation will cause the algorithm
to run faster on a particular graph with 100 vertices and 8000 edges?

i. The adjacency matrix representation will run faster

ii. The adjacency list representation will run faster

iii. There is not enough information to answer

Explain your answer in 1-2 sentences.

13 of 14

Name: NetID:

10. Data structures [8 pts]

Identify which of the following data structures

A. Adjacency list

B. Adjacency matrix

C. Min heap

D. Singly linked list

E. Doubly linked list

F. Array

G. Hash table

H. (Balanced) binary search tree

is best for storing the following kinds of data:

a. A contact list for looking up your friends’ phone numbers

b. Players waiting for their turn to start a game, who may get tired and leave

c. Reminders that are displayed at a specified time

d. Print jobs that are printed in the order they are submitted

e. Cached results from a function that computes the Fibonacci numbers

f. A contact list for displaying the name of someone who is calling you

g. Web pages and the links between them

h. Permissions for determining whether two users are allowed to speak with each other

Note: each data structure is matched with exactly one scenario.

14 of 14

