
Practice	with	the	second	loopy	question	

 Introduction

We practice finding a loop condition B by using the se-

cond loopy question: Is !B && P => R true? Thus, we
look for !B that makes !B && P => R true and comple-
ment !B to get B.

Here’s the invariant P and postcondition for our first ex-
ample.

 P: s is the sum of m..k–1 and m ≤ k ≤ n
 R: s is the sum of m..n-1

Knowing that P is true, and doing some pattern matching with P and R, we see that R will be true if k = n. There-
fore, !B is k = n, so the loop condition B is k != n. Looking at the restriction on k in invariant P, we can write the
loop condition at k < n if we want. Thus, we use either

 while (k != n) { … } or while (k < n) { … }

A second example

Here are the invariant and postcondition for a loop to calculate the minimum value in array segment b[0..n-1]:

 P: v = minimum of b[0..k–1] and 0 ≤ k ≤ n
 R: v = minimum of b[0..n–1]

Using reasoning like we did the first example, you can see that we get the same answer for B as in the previous ex-
ample.

 while (k != n) { … } or while (k < n) { … }

Computing z = b^c

Here are the invariant and postcondition for a loop to store b^c in z, given c ≥ 0:

 P: b^c = z * x^y and y ≥ 0
 R: z = b^c

Again doing pattern matching, we see that R will be true when P is true and x^y = 1. That last formula, x^y = 1, is
true, when y = 0. So our loop condition is y ≠ 0:

 while (y != 0) { … }

Exercises

In the two examples below, find the loop condition. Answers are at the end of the pdf script for this video.

1. P: s is the sum of k..n–1 and m ≤ k ≤ n 2. P: v = minimum of b[k..n] and 0 ≤ k ≤ n
 R: s is the sum of m..n-1 R: v = minimum of b[0..n] and 0 ≤ k ≤ n

Answers

In the first exercise, doing pattern matching on P and R, we see that k = m is needed. Therefore the loop condi-
tion is k != m. This can be written as m < k if you want, since m ≤ k ≤ n:

 while (k != m) { … } or while (m < k) { … }

In the second exercise, pattern matching on P and R, we see that k = 0 is needed. Therefore, the loop condition
condition is k != 0. This can be written as 0 < k if you want, since 0 ≤ k ≤ n:

 While (k != 0) { … } or while (m < k) { … }

	

	!B		&&		P

init								Q S 						B
P B		&&	P

!B	&&	P				implies			R			

