
Practice	with	the	first	loopy	question	using	array	diagrams	

We look at two examples of checking the first loopy ques-
tion.

Consider this precondition and invariant, and remember
that we are looking for initialization init to make this Hoare-
triple true: {Q} init {P}.

To make P look like Q, segments b[0..h-1] and b[j+1..k] must be empty. Remembering our formula Follower –
First for the number of values in a range, to make the first segment empty requires h – 0 = 0, so we use the assign-
ment h= 0; . Similarly, to make b[j+1..k] empty, we need k – j = 0, so we use the assignment j= k. Thus, we have:

 {Q} h= 0; j= k; {P}

There is another way to see what to assign to h and j, without using the formula. It’s nice to have two different
ways of figuring out the initialization, for we can do it both ways and, if we get different results, we know there is an
error and we can check our work.

Look at Q: the first unknown is b[0]. Look at P: the first unknown in b[h]. Therefore, we need h = 0 initially.
The last unknown in Q is b[k]. The last unknown in P is b[j]. Evidently, we need j = k initially.

Binary search

This example comes from an algorithm to search a sorted array b for a value x. Precondition Q and invariant P
are given below. This example is similar enough to the previous one that you should be able to it yourself. Please do
that. The answer is at the end of the pdf of this script.

Answer to question Segment b[0..h-1] has to be empty. Using the formula Follower – First, we see that h + 1 – 0
has to be true, so we use the assignment h= –1; . Similarly, we need b.length – (t+1) initially, so we use the assign-
ment t= b.length–1; . Therefore, the initialization is:

 h= –1; t= b.length-1;

	

	!B		&&		P

init								Q S 						B
P B		&&	P

!B	&&	P				implies			R			 																																			?	Q:	b	
0																																																																								k								

					≤	0																									?																										>	0		P:	b	

0																							h																								j																							k	

																											?	Q:	b	
0																																																																													b.length								

(assume b is in ascending order)

					≤	x																									?																										>	x		P:	b	

0																	h																													t																											b.length	

