
Mechanics	of	Junit	Testing	

We discuss the mechanics of JUnit testing and warn you of fatal
mistakes you might make. We do this without really testing anything,
allowing us to concentrate on the mechanics of testing.

Here is the initial JUnit testing class, CTester1. It has one proce-
dure, which is preceded by the annotation @Test. Procedure test con-
tains a call on procedure fail, which always fails.

A test that fails.

With class CTest1 selected in the Package Ex-
plorer pane, use menu item Run à Run.

This causes method test to be called, and the re-
sults are displayed in a new JUnit Testing pane
where the Package Explorer pane was. A thick red
bar appears, indicating that an error occurred. Call-
ing procedure test caused an error because proce-
dure fail always causes an error.

A test that passes.

Let’s remove the call on procedure fail in
method test and use menu item Run à Run again.
Now, execution of a call on procedure test did not
produce an error, so the JUnit pane has a green
arrow.

A severe warning!

We now have two testing procedure in class CTest1, named test1 and
test2. Procedure test1 has an empty procedure body; test2 has the call on
procedure fail. Again, with JUnit testing class CTester1 selected in the
Package Explorer pane, use menu item Run à Run.

Mechanics	of	Junit	Testing	

Hey, the JUnit testing pane indicates that
there were no errors! In spite of the fact that
method procedure test2 called procedure fail.
What happened?

Procedure test1 was executed because it was
proceeded by the annotation @Test, but proce-
dure test2 was not executed because it was not
proceeded by annotation @Test. Only proce-
dures that are preceded by that annotation will
be executed.

We can see that procedure test2 was not ex-
ecuted in another way. Click the horizontal
arrow that precedes CTester1 in the JUnit test-
ing pane. The contents of that folder are re-
vealed —only test1 and not test2 was executed.
The green check just before test1 indicates that
it ran without error.

Always check!

Always check that all the procedures were
executed. Click the horizontal arrow to reveal
the contents of the folder and make sure that
(1) all expected procedures are listed and (2)
all have green check marks next to them.

Watch out for infinite loops!

We do one more thing. We put the @Test
annotation before procedure test2 and change
its body to have an infinite while-loop. Again,
we run the program using Run à Run. There
is a green bar, but it is only half as long as it
should be. Secondly, while the contents of
CTester1 indicates that procedure test1 com-
pleted, procedure test2 didn’t. It has an arrow
instead of a check mark, which means that the
procedure is in an infinite loop.

Summary

Check that (1) all procedures were called and (2) their calls completed.

