
Developing	depth-first	search	
David	Gries	

	

We show you how to develop depth-first search from this specification —the method will use recursion:

 /** Visit every node reachable along a path of unvisited nodes from node u.
 Precondition: u is not visited. */
 public static void dfs(Node u)

The same algorithm works for both directed and undirected graphs.

We write a very abstract version of this algorithm. For example, we don’t look at class Node, and we don’t de-
scribe how to maintain information about which nodes have been visited. We just allow ourselves to ask “if u is not
yet visited” and to write “Visit u” to say that node u has now been visited. We also process the neighbors of node u
using a loop like this:

 for each neighbor w of u …

How to start
First, draw an outline of the graph (to the right), showing node u and its neighbors.

Visited nodes are black and unvisited nodes are white. Thus, u is white, and since we
don’t know what n’s neighbors are, we make two white and one black.

We draw each neighbor as a triangle, indicating that the neighbor may have neigh-
bors, which may also have neighbors, etc. We overlap some triangles to remind ourselves
that there could be edges between nodes of different triangles —this is, after all, a general graph. You don’t have to
draw the triangles overlapping, like this, but it does give us a good reminder that the triangles are not trees.

According to the specification, the nodes to be visited are on unvisited paths starting at u and going through its
left (unvisited) neighbor or its right (unvisited) neighbor.

Writing the body of the method
We now write the body of the method. The specification says to visit every node

reachable along a path of unvisited nodes from node u. It also says that u is unvisited.
Looking at the graph outline, therefore, the first step is to:

 Visit u;

But now, the unvisited neighbors of u are no longer reachable on an unvisited path start-
ing at u. So instead, we have to,

(1) for each neighbor w of u, visit all nodes reachable along paths of unvisited nodes from w.

The similarity of this statement to the method spec indicates that a recursive call dfs(w) will do the job. Respecting
the precondition that the parameter of a call on dfs is unvisited, we write:

 for each neighbor w of u:
 if (w is not visited) dfs(w);

And that’s it! The method has been written.

Complete method

 /** Visit every node reachable along a path of unvisited nodes from node u.
 Precondition: u is not visited. */
 public static void dfs(Node u) {
 Visit u;

 for each neighbor w of u:
 if (w is not visited) dfs(w);

 }

…	
u	

…	
u	

