Program Input/Output (1/0)

CS2110
Recitation 8

Program Input/Output

Arguments

l

> Files
Remote ot ¢
Program [" Machines [his is |/O
Java's I/O classes are
» Console . . :
_ in package java.io
package java.nio
l To import the classes:
Return values import java.io.*;
import java.nio*;

Files

* Files (and directories) are identified by paths

&l Macintosh HD

»] System * ¢ davidgries » [ReviewSheet.doc CS2110spring2013 » Plazza material

& Network - :
. >
I

’ CS2110Spring2014 » Staff stuff

Guest I Sai I
» | User Information » Shared > Stuffit > CS2110Spring2015 » Students
L| Users > > CS2110Spring2016 » TAs
[

g CS2110Spring2017 » TYPOS

Remote Disc
Seagate...lus Drive 2
Work

* File system on a hard disk is structured as a
tree
— leaves are files (or empty directories)
— Internal nodes are directories (aka folders)

v v v v v

Interface Path

An object of type Path contains the path name to a file or
directory.

* Path is an interface because different operating systems
handle files differently.
* For each OS, there is a class that implements Path
* To find out which class your OS uses, try p.getClas()

* A path can be absolute or relative.

* Absolute paths give the full path of the file. To find out
what absolute paths look like on your machine, try
p.toAbsolutepath()

* Relative paths define the location relative to some
default location (in Java, the package directory)

* You should always use relative paths (otherwise your
code won't work on other machines)

Class Paths

An object of type Path contains the path name to a file or
directory.

Class Paths contains static methods for creating Path objects
Path p = Paths.get("res","mapl.xml");

L T Ll L A

v S—
L:"‘R;c'm'onu Paths.get can take any number of
= sre arguments.
v £} (default package)
» (JID 10.] . .
> m JREE) stZZOL'b:Zva lavaSE-1.7] Arguments define a path relative to
) avd 1./ 9 .
v E_; 4 oy 1 | the package in which the class
7 es q
=re resides. (e.g., res/map1.xml)
= mapl.xml
=] map2.xml

=] map3.xml

T I

Class Files

Class Files contains static methods to operate on the
file/directory given by a path object. Class Files has lots of
methods, e.g.

exists(Path p) isReadable(Path p) createFile(Path p)

delete(Path p) isWritable(Path p)

size(Path p) ... (lots more) ...

javax.swing.JFileChoooser

Want to ask the user to navigate to select a file to read?

JFileChooser jd= new JFileChooser();
jd.setDialogTitle("Choose input file");
int returnVal= jd.showOpenDialog(null);

returnVal is one of
File f= jd.getSelectedFile(); JFileChooser.CANCEL_OPTION

JFileChooser. APPROVE_OPTION
JFileChooser.ERROR_OPTION

jd.showOpenDialog("/Volumes/Work15A/webpage/ccgb/");

Starting always from the user’s directory can be a pain for the

user. User can give an argument that is the path where the
navigation should start

Java I/O uses Streams

Stream: a sequence of data values that is processed—either
read or written—from beginning to end.

Input streams represent an input source (e.g., a file you are
reading from)

/ ‘
Stream Program
= -
Z — .
[eeta Source 010010101010 (010010101010
= b
I e E _

Output streams represent an output destination (e.g., a file
you are writing to)

Program Stream

- = - ¥

010010101010 (010010101010 Data Source

-

- N\

— i

—\ \\\\\\\\\\\\

A metaphor

* Streams are like conveyor belts in a factory or warehouse

* Input streams: take each item (e.g., a line from a file) off the
conveyor belt and deal with it

* Qutput streams: generate each item (e.g., a line in a file) and
then put it on the conveyor belt

Types of Streams

* Lots of different types of streams

Byte Streams Blocking Streams
Character Streams Buffered Streams NIO streams

Object Streams

10

Input Streams

 InputStream and OutputStream are byte
1/O streams that can be used for File I/0O

* Read input stream for a file is by creating an
instance of class InputStream:

InputStream is= Files.newInputStream(p);

is.read() // get next byte of file

Too low-levell Don’t want to do byte by byte.
Instead, use a buffered stream to read line by line

Buffered Streams

Class BufferedReader creates a buffered stream from a raw
stream (e.g., a InputStream object). You can also create a
BufferedReader directly from a path. BufferedReader provides
a method for reading one line at a time.

InputStream is= Files.newInputStream(p);
BufferedReader br= new BufferedReader(is);

OR

BufferedReader br= Files.newBufferedReader(p);

String s= br.readlLine(); // Store next line of file in s
// (null if none)

br.close(); // close stream when done .

Pattern to read a file

Always use this pattern to read a file!

line= first line;

while (line != null) {
Process line;
line= next line;

}

line= br.readLine();
while (line != null) {
Process line
line= br.readLine();

13

Example: counting lines in a file

/** Return number of lines in file at path p.
Throw IO Exception if problems encountered when reading
*/
public static int getSize(Path p) throws IOException {
BufferedReader br= Files.newBufferedReader(p);

int n= ©0; // number of lines read so far
String line= br.readlLine();

while (line != null) {

n= n+1l;

line= br.readLine(); Always use this pattern to
} ; read a file!
bP'CIOSe()3_‘ Don ’Eforget! line= first line;
return n; ’

} while (line != null) {
Process line;
line= next line;

(write as while loop) | }

Output Streams

Writing a file is similar. First, get a BufferedWriter:

BufferedWriter bw= Files.newBufferedWriter(p); \

Default: create file if it doesn't exist,

overwrite old files
Then use

o ”)

bw.write(“. Can override defaults using options

to write a String to the file. from Class StandardOpenOption

bw.close(); // Don’t forget to close!

Recommended: use a PrintWriter to write non-String objects
and to access additional methods (e.g., printin)

Printwriter pw = new PrintWriter(Files.newBufferedWriter(p));
pw.printin(6);

Standard Streams

* Standard streams are operating system
features that read input from the keyboard
and write output to the display

* Java supports these [y e orobably already

System.out - used this! It's just an
output stream.

System.in

* System.out is a PrintWriter
* System.in is an InputStream

Reading Remote Files

Class URL in package java.net:
URL url= new URL(“http://www. /links.html);
I

A URL (Universal Resource Locator) describes a resource on the
web, like a web page, a jpg file, a gif file

The “protocol” can be:

http (HyperText Transfer Protocol)
https

ftp (File Transfer Protocol)

17

Reading from an html web page

Given is URL url= new URL(“http://www. /links.html);

To read lines from that webpage, do this:

Have to open

1. Create an InputStreamReader:
the stream

InputStreamReader isr= I
new InputStreamReader(url.openStream());

2. Create a Buffered Reader:
BufferedReader br= new BufferedReader(isr);

3. Read lines, as before, using br.readLine()

18

