
1

Hashing By David Gries

Hashing is a technique for maintaining a set of
elements in an array. We give most important
concepts and information in this short handout.

A set is just a collection of distinct (different)
elements on which the following operations can be
performed:

• Make the set empty
• Add an element to the set
• Remove an element from the set
• Get the size of the set (number of elements in it)
• Tell whether a value is in the set
• Tell whether the set is empty.

Obvious first implementation: Keep elements in an
array b. The elements are in b[0..n-1], where variable
n contains the size of the array. No duplicates
allowed.

Problems: Adding an item take time O(n) —it should
not be inserted if it is already in the set, so b[0..n-1]
has first to be searched for it. Removing an item also
takes time O(n) in the worst case. We would like an
implementation in which the expected time for these
operations is constant: O(1).

Solution: Use hashing. We illustrate hashing
assuming that the elements of the set are Strings.

Basic idea: Rather than keep the Strings in b[0..n-1],
we allow them to be anywhere in the b. We use an
array whose elements are of nested class HashEntry:

/** An instance is an element in hash array */
private static class HashEntry {

public String element; // the element
public boolean isInSet; // = “element is in set”

/** Constructor: an entry that is in the set iff b */
public HashEntry(String e, boolean b) {

element= e;
isInSet= b;

}
}

Each element of array b is either null or the name of a
HashEntry, and that entry indicates whether it is in the
set or not. So, to remove an element of the set, just set
its isInSet field to false.

Hashing with linear probing. Here's the basic idea.
Suppose we want to insert the String "bc" into the set.
Compute an index k of the array, using what is called
a hash function,

int k= hashCode("bc") % b.length;

and try to store the element at position b[k]. If that
entry is already filled with some other element, try to
store it in b[(k+1)%b.length] —use wraparound, just
as in implementing a queue in an array. If that
position is filled, keep trying successive elements in
the same way.

Each test of an array element to see whether it is null
or the String is called a probe.

Function hashCode(…) picks some integer depending
on its argument. We show a hash function later.

Checking to see whether a String "xxx" is in the set is
similar; compute k= hashCode("xxx")%b.length and
look in successive elements of b[k..] (using
wraparound) until a null element is reached or until
"xxx" is found. If it is found, it is in the set iff the
position in which it is found has its isInSet field true.

You might think that this is a weird way to implement
the set, that it couldn't possibly work. But it does,
provided the set doesn't fill up too much, and
provided we later make some adjustments.

Basic fact:

Suppose String s is in the set and hashCode(s)%
b.length = k. Let b[j] be the first null element at or
after after b[k] (with wraparound). Then s is one of
the elements b[k], b[k+1], …, b[j-1] (with
wraparound).

Because of the basic fact, we can write method add as
follows, assuming that array b is never full:

b
0 k b.length

try to insert element at b[k], b[k+1], etc

...

2

Hashing

/** Add s to this set */
public void add(String s) {

int k= hashCode(s);
while (b[k] != null && !b[k].element.equals(s))

{
k= (k+1) % b.length();

}

if (b[k] == null) {
b[k]= new HashEntry(s, true);
size= size+1;
return;

}

// s is in b[k] but may not be in set.
if (!b[k].isInSet) {

b[k].isInSet= true;
size= size + 1;

}
}

Removing an element is just as easy. Note that
removing it leaves it in the array.

/** Remove s from this set (if it is in it) */
public void remove(String s) {

int k= hashCode(s) % b.length;
while (b[k] != null && !b[k].element.equals(s))

{
k= (k+1) % b.length();

}

if (b[k] == null || !b[k].isInSet)
return;

// s is in the set; remove it.
b[k].isInSet= false;
size= size-1;

}

Hash functions

We need a function that turns a String s into an int.
It doesn’t matter what this function is as long as it
distributes Strings to integers in a fairly even
manner. Here is one function, assuming that s has 4
chars.

s[0]*373 + s[1]*372 + s[2]*371 + s[3]*370

i.e.
((s[0]*37 + s[1])*37 + s[2])*37 + s[3]

Reduce result modulo b.length to produce an int in
the range of b. Some of the above calculations may
overflow, but that’s okay. The overflow produces an
integer in the range of int that satisfies our needs.

We discuss other hash functions later.

What about the load factor?

The load factor, lf, is defined by:

lf = (size of elements of b in use) / (size of array b)

The load factor is an estimate of how full the array is.
If it is close to 0, the array is relatively empty, and
hashing will be quick. If lf is close to 1, then adding
and removing elements will tend to take time linear in
the size of b, which is bad. Here’s what someone
proved:

Under certain independence assumptions, the
average number of array elements examined in
adding an element is 1/(1-lf).

So, if the array is half full, we can expect adding an
element to look at 1/(1-1/2) = 2 array elements.
That’s pretty good! If the set contains 1,000 elements
and the array size is 2,000, only 2 probes are
expected!

So, we keep the array no more than half full.
Whenever insertion of an element will increase the
number of used elements to more than 1/2 the size of
the array, we will “rehash”. A new array will be
created and the elements that are in the set will be
copied over to it. Of course, this takes time, but it is
worth it. Here’s the method:

/** Rehash array b */
private void rehash() {

HashEntry[] oldb= b; // copy of array b

// Create a new, empty array
b= new HashEntry[nextPrime(4 * size)];
size= 0;

// Copy active elements from oldb to b
for (int i= 0; i != oldb.length; i= i+1)

if (oldb[i] !== null && oldb[i].isInSet)
b.add(oldb[i].element);

}

Size of new array: the smallest prime number that is
at least 4*b.size(). The reason for choosing a prime
number is explained on the next page.

3

Hashing

Quadratic probing.

Linear probing looks for a String in the following
entries, given that the String hashed to k (we
implicitly assume that wraparound is being used):

b[k], b[k+1], b[k+2], b[k+3], …

This tends to produce clustering —long sequences of
non-null elements. This is because two Strings that
hash to k and k+1 use almost the same probe
sequence.

A better idea is to probe the following entries:

b[k], (for obvious reasons,
b[k + 12] this is called
b[k + 22] “quadratic probing”)
b[k + 32]
...

This has been shown to remove the “primary
clustering” that happens with linear probing.
However, Strings that hash to the same value k still
use the same sequence of probes. There are ways to
eliminate this “secondary clustering”, but we won’t
go into them here. We just want to present the basic
ideas.

Quadratic probing has been shown to be feasible if
the size of array b is a prime and if the table is
always at least 1/2 empty. In this case, it has been
proven that:

• A new element can always be added, and
• its probe sequence never probes the same array

elements twice.

Calculating the next element to probe

Calculation of k+i2 is expensive. We show how to
make it more efficient.

Let Hi = i2, for i = 0, 1, 2, 3

For i > 0, we calculate:

Hi+1 – Hi
= <definition of Hi+1 and Hi >

(i+1)*(i+1) – i*i
= <arithmetic>

2*i + 1

Therefore, we can calculate Hi+1 from Hi-1 using the
formula Hi+1 = Hi + 2i + 1.

An implementation

The CS2110 course website contains a file
HashSet.java —look under the hashing recitation. An
instance of class HashSet implements a set as a hash
table, using the material discussed in this handout.
File HashSetTester.java is a Junit test class used to
test HashSet.

When you look at HashSet, think of the following:

• Class HashSet contains a nested class, HashEntry.
This class can be static because it does not refer to
any fields or methods of class HashSet. It is nested
because there is no need for the user to know
anything about it. One such good use of nested classes
is information hiding, as we do here.

• Class HashSet contains an inner class, HashSet-
Iterator. It can’t be a nested class because it DOES
make use of fields of class HashSet. This is a good
use of inner classes for information hiding.

• Enumerating the elements of the set does NOT
produce them in ascending order.

• Method hashCode is first defined in class Object, the
superest class of them all. Method hashCode in class
String computes the hash code using the equivalent
of:

((s[0]*31 + s[1])*31 + …)*31 + s[s.length()-1]

Don’t use hashing for really long strings!

• All wrapper classes provide hashCode functions for
primitive values. The hash code in class Integer just
produces the int value that the object wraps.

