
8/25/17	

1	

Arguments	to	method	main,	
Packages,	
Wrapper	Classes,	
Characters,	
Strings	
										

CS2110,	Recita.on	1	
Demo: Create application

To	create	a	new	project	that	has	a	method	called	main	with	a	
body	that	contains	the	statement	
 System.out.println("Hello	World");		

do	this:	
•  Eclipse:	File	->	New	->	Project	
•  File	->	New	->	Class	
•  			Make	Package	field	empty!!!		

•  Give	it	a	name	
•  			Check	the	method	main	box	
•  In	the	class	that	is	created,	write	the	above	statement	in	the	

body	of	main	
•  Hit	the	green	play	buTon	or	do	menu	item	Run	->	Run	
	

Java Application
public	sta.c	void	main(String[]	args)	{	…	}	

Parameter:	String	array	

A	Java	program	that	has	a	class	with	a	sta^c	procedure	main,	as	
declared	above,	is	called	an	applica^on.	
	
The	program,	i.e.	the	applica^on,	is	run	by	calling	method	main.	
Eclipse	has	an	easy	way	to	do	this.	

Method main and its parameter
public	sta.c	void	main(String[]	args)	{	…	}	

Parameter:	String	array	
In	Eclipse,	when	you	do	menu	item	

					Run	->	Run											(or	click	the	green	Play	buTon)	

Eclipse	executes	the	call	main(array	with	0	elements);	

To	tell	Eclipse	what	array	of	Strings	to	give	as	the	argument,	
start	by	using	menu	item	

						Run	->	Run	Configura^ons…	
	 	 	 	 	 	 	 	 										(see	next	slide)	

Window Run Configurations
This	Arguments	pane	of	Run	Configura^ons	window	gives	
argument	array	of	size	3:	

args[0]:	“SpeciesData/a0.dat”	

args[1]:	“2”	

args[2]:	“what	for?”	 Click	Arguments	pane	

Quotes	needed	
because	of	space	char	Quotes	OK,	but	not	needed	

DEMO:	Giving	an	argument	to	the	call	on	main	

Change	the	program	to	print	the	String	that	is	in	args[0],	i.e.	
change	the	statement	in	the	body	to	

 System.out.println(args[0]);		

Then	

•  Do	Run	->	Run	Configura^ons	
•  Click	the	Arguments	tab	

•  In	the	Program	field,	type	in	“Haloooo	there!”	

•  Click	the	run	buTon	in	the	lower	right	to	execute	the	call	on	
main	with	an	array	of	size	1	…	

8/25/17	

2	

PACKAGES	AND	THE	JAVA	API	
	

Package	
Package:		Collec^on	of	Java	classes	and	other	packages.	
See	JavaSummary.pptx,	slide	20		
Available	in	the	course	website	in	the	following	loca^on:	
www.cs.cornell.edu/courses/CS2110/2017fa/links.html	

Three	kinds	of	packages	

(1)  The	default	package:	in	project	directory	/src	

(2)  Java	classes	that	are	contained	in	a	specific	directory	on	your	
hard	drive	(it	may	also	contain	sub-packages)	

(3)  Packages	of	Java	classes	that	come	with	Java,		
e.g.	packages	java.lang,	javax.swing.	

	

API	packages	that	come	with	Java	
Visit	course	webpage,	click	Links,	then	Java	8	API	Specs.	
Link:	www.cs.cornell.edu/courses/CS2110/2017fa/links.html	
	
	
	
	
	
	
Scroll	down	in	lel	col	(Packages	pane),	click	on	java.lang	

BeTer	yet,	just	google	something	like:	
	
					java	8	API	
	
	

Finding	package	documenta^on	Scroll	down	un^l	
java.lang	is	seen	

Package	java.lang	vs.	other	packages	
You	can	use	any	class	in	package	java.lang.	Just	use	the	
class	name,	e.g.		
						Character		
To	use	classes	in	other	API	packages,	you	have	to	give	
the	whole	name,	e.g.	
					javax.swing.JFrame	
	

So	you	have	to	write:	
	
					javax.swing.JFrame		jf=		new	javax.swing.JFrame();	
	

Use	the	import	statement!	
To	be	able	to	use	just	JFrame,	put	an	import	
statement	before	the	class	defini^on:	
	

import	javax.swing.JFrame;	
	
public	class		C	{	
					…	
					public	void	m(…)	{	
									JFrame		jf=		new	JFrame();	
									…	
					}	
}	

Imports	only	class	JFrame.	
Use	the	asterisk,	as	in	line	
below,	to	import	all	classes	
in	package:	

					import	javax.swing.*;	

8/25/17	

3	

Other	packages	on	your	hard	drive	
One	can	put	a	bunch	of	logically	related	classes	into	a	package,	
which	means	they	will	all	be	in	the	same	directory	on	hard	drive.	
Reasons	for	doing	this?		We	discuss	much	later.	

Image	of	Eclipse	
Package	Explorer:	

3	projects:	 project	has	
default	package		
and		
	
package	pack1	

Default	package	has	
2	classes:	
Rec02,	Rec02Tester	
	
	pack1	has	1	class:	C	

Hard	drive										Eclipse	Package	Explorer	
Eclipse	
					Hashing	
					I03Demo	
					recita^on02	
										src	
														Rec02.java	
														Rec02Tester.java	
														pack1	
																				C.java	

Eclipse	does	not	make	a	directory	for	the	default	
package;	its	classes	go	right	in	directory	src	

Impor^ng	the	package	

import	pack1.*;	
	
public	class	DemoPackage	{	
	
				public	Rec02()	{	
								MyFrame		v=	MyFrame();	
									…	
				}	
}	
	

package	pack1;	
	
import	javax.swing.*;	
	
public	class	MyFrame		
																	extends	JFrame	{	
}	

Every	class	in	package	
pack1	must	start	with	
the	package	statement	

Every	class	outside	the	
package	should	import	its	
classes	in	order	to	use	them	

CHAR	AND	CHARACTER	

Primitive type char

char fred= 'a';
char wilma= 'b';
System.out.println(fred);

Unicode:	2-byte	representa^on	
Visit		www.unicode.org/charts/		
to	see	all	unicode	chars	

a

Use	single	quotes	

 Special	chars worth	knowing	about	
•  ' ' -	space	
•  '\t' -	tab	character	
•  '\n' -	newline	character	
•  '\'' -	single	quote	character	
•  '\"' -	double	quote	character	
•  '\\' -	backslash	character	
•  '\b' -	backspace	character	-	NEVER	USE	THIS	
•  '\f' -	formfeed	character		-	NEVER	USE	THIS	
•  '\r' -	carriage	return					-	NEVER	USE	THIS	

Backslash,	called	the	
escape	character	

8/25/17	

4	

Casting char values

(int)	'a'								gives	97	
(char)	97								gives	'a'
(char)	2384			gives		'ॐ'	
	

	

Cast	a	char	to	an	int	using	unary	prefix	operator	(int),	
Gives	unicode	representa^on	of	char,	as	an	int	

No	opera^ons	on	chars	(values	of	type	char)!		BUT,	if	
used	in	a	rela^on	or	in	arithme^c,	a	char	is	automa^cally	cast	to	
type	int.	
Rela^ons		<					>				<=			>=				==			!=				==	
'a' < 'b' same as 97 < 98, i.e. true
'a' + 1 gives 98 	

Om,	or	Aum,	the	sound	of	
the	universe	(Hinduism)		

Specs	for	Class	Character	

Specs	for	Class	Character	
Main	pane	now	contains	descrip^on	of	class	Character:	
1.  The	header	of	its	declara^on.	
2.  A	descrip^on,	including	info	about	Unicode	
3.  Nested	class	summary	(skip	it)	
4.  Field	summary	(skip	it)	
5.  Constructor	summary	(read)	
6.  Method	summary	(read)	
7.  Field	detail	(skip	it)	
8.  Method	detail	(read)	
	

Find	method	compareTo	
See	a	1-sentence	descrip^on	
	
Click	on	method	name	
Takes	you	to	a	complete	
descrip^on	in	Method	detail	
sec^on	
	

Character:	
summary,	func^on	compareTo	

Class Character	
An	object	of	class	Character	wraps	a	single	char	
(has	a	field	that	contains	a	single	char)	

Character c1= new Character('b');
Character c2= new Character('c');

Character@a1	
				???	 'b'
charValue()	
compareTo(Character)	
equals(Object)	

Character@b9	
				???	 'c'
charValue()	
compareTo(Character)	
equals(Object)	

Character@a1c1	 Character@b9c2	

Don’t	know	
field	name	

Class Character
•  Each	instance	of	class	Character	wraps	a	char	value	—has	a	

field	that	contains	a	char	value.	Character	allows	a	char	value	
to	be	treated	as	an	object.	

•  Find	methods	in	each	object	by	looking	at	API	specs	on	web:	
			docs.oracle.com/javase/8/docs/api/java/lang/Character.html	
	
c.charValue()	

c.equals(c1)	

c.compareTo(c1)	

c.toString()	

…	

c’s	wrapped	char,	as	a	char	

True	iff	c1	is	a	Character	and	wraps	same	char	

0	if	c	==	c1.	<	0	if	c	<	c1.	>	0	if	c	>	c1.	

c’s	wrapped	char,	as	a	String	

…	

8/25/17	

5	

Static methods in class Character
Lots	of	sta^c	func^ons.	You	have	to	look	to	see	what	is	available.	
Below	are	examples	

isAlphabetic(c)
isDigit(c)
isLetter(c)
isLowerCase(c)
isUpperCase(c)
isWhitespace(c)
toLowerCase(c)
toUpperCase(c)

These	return	the	obvious	
boolean	value	for	parameter	
c,	a	char	

Whitespace	chars	are	the	space	‘	‘,	
tab	char,	line	feed,	carriage	return,	
etc.	

These	return	a	char.	

We’ll	explain	“sta^c”	soon	

You	can	import	these	using	“import	sta^c	java.lang.Character.*;”	

== versus equals	
c1 == c2
c3 == c1
c1 == c1
c1.equals(c2)
c3.equals(c1)

Character@a1	
				???	 'b'
charValue()	
compareTo(Character)	
equals(Object)	

Character@b9	
				???	 'b'
charValue()	
compareTo(Character)	
equals(Object)	

Character@a1c1	 Character@b9c2	 nullc3	

true	iff	c1,	c2	contain	same	values	

true	iff	c2	is	also	a	Character	
object	and	contains	same	char	
as	c1	

false	
false	
true	

true	
Error!!!	

STRING	

String@x2	
“CS2110”

Class String	
String s= “CS2110”;

???	

String: special place in Java:
no need for a new-expression.
String literal creates object. s	 String@x2	

length()	
charAt(int)	
subString(int)	
subString(int,	int)	
equals(Object)	
trim()	
contains(String)	
indexOf(String)	
startsWith(String)	
endsWith(String)	
…		more			…	

Find	out	about	methods	of	class	String:	
docs.oracle.com/javase/8/docs/api/	
index.html?java/lang/String.html	

Lots	of	methods.	We	explain	basic	ones	

Important:	String	object	is	immutable:	
can’t	change	its	value.	All	opera^ons/
func^ons	create	new	String	objects	

Operator +

"abc" + "12$" evaluates	to		"abc12$"	
+	is	overloaded	

1 + 2 + "ab$" evaluates	to			"3ab$"	

If	one	operand	of	concatena^on	is	a	String	and	the	other	isn’t,	
the	other	is	converted	to	a	String.	
Sequence	of	+	done	lel	to	right	

"ab$" + 1 + 2 evaluates	to			"ab$12"	Watch	
out!	

Operator +
System.out.println("c is: " + c +
 ", d is: " + d +
 ", e is: " + e);

c	 32	 d	 -3	 e	 201	

Output:	
c	is:	32,	d	is:	-3,	e	is:	201	

Can	use	+	to	advantage	in	println	statement.	Good	debugging	tool.	

•	Note	how	each	output	number	is	annotated	to	know	what	it	is.	

Using	several	
lines	increases	
readability	

8/25/17	

6	

s.substring(i):	new	String	containing	
chars	at	posi^ons	from	i	to	end	
—			s.substring(2)			is			'	13'	

Picking out pieces of a String

s.length():	number	of	chars	in	s								—			5		

String@x2	

"CS 13"				?	

s	 String@x2	

length()	
charAt(int)	
subString(int)	
subString(int,	int)	
…		more			…	

"CS 13"
 01234 Numbering	chars:	first	one	in	posi^on	0	

s.charAt(i):	char	at	posi^on	i		

s.substring(i,j):	new	String	
containing	chars	at	posi^ons	
i..(j-1)	—			s.substring(2,4)			is		'	13'	

Be	careful:	Char	at	j	not	included!	

Other useful String functions
s.trim() – s but with leading/trailing whitespace removed

s.indexOf(s1) – position of first occurrence of s1 in s
 (-1 if none)

s.lastIndexOf(s1) – similar to s.indexOf(s1)

s.contains(s1) – true iff String s1 is contained in s2

s.startsWith(s1) – true iff s starts with String s1

s.endsWith(s1) – true iff s ends with String s1

s.compareTo(s1) – 0 if s and s1 contain the same string,
 < 0 if s is less (dictionary order),
 > 0 if s is greater (dictionary order)

There are more functions! Look at the API specs!

