
Using	the	Hoare	triple	to	define	statements	

We see how Hoare triples are used to define other parts of a programming language. We won’t use this material 
formally, but this does formalize the informal thought processes that one goes through when programming. 

The if-else statement 

We start off with the if-else statement.  How can we know that executing the if-else statement beginning with 
precondition Q true will terminate with postcondition R true?  

 
 {Q} 
 if  (B) S1 
 else S2 
 {R} 
 
 

To the right is a flowchart of this if-else-statement, with an assertion on each edge. Q is on the incoming edge, R is 
on the outgoing edge, Q && B is on the edge with B being true, and Q && !B is on the edge with B being false.  
Evidently, we have to show that executing S1 with Q && B true terminates with R true, and similarly for the case 
when B is false. Thus, from this flowchart, we can say the following: 

 Hoare triple for if-else: 
   If   {Q && B} S1{R}   and   {Q && !B} S2 {R} 
  then   {Q} if (B) S1 else S2 {R}  

This should be self-evident, common sense: If R is to be true after execution of the if-else statement, we have to 
be sure that it is true whether B is true and S1 is executed or B is false and S2 is executed. 

Sequencing 

Suppose we want to prove  {Q} S1; S2 {R}. This requires showing that each of S1 and S2 does its job, but we 
have to find out what their jobs are! We have to find an assertion A that acts as a postcondition for S1 and a precon-
dition for S2: 

 {Q} S1; {A} S2 {R} 

 We state this as follows: 

 Hoare-triple for S1; S2 
 If  {Q} S1 {A}  and  {A} S2 {R}, 
 then {Q}  S1; S2  {R}. 

Implication 

Let A and B be boolean expressions. A implies B, written  A => B , is true if whenever A is true B is also true. 
Here is an example: 

 x = 5  =>  x ≥ 5 

We sometimes put two assertions in a row, as in the expression below, meaning that the first implies the second 

 {x = 5}  {x ≥ 5}  x= x+1; {x ≥ 6} 

This	may	seem	silly,	but	there	are	real	cases	where	such	assertions	arise.	In	such	situations,	we	have	to	show	
that	the	first	assertion	implies	the	second.	In	this	case	it	is	obvious.	

Here	are	two	general	forms	for	this	situation,	one	before	a	stateement	and	the	other	after	a	statement:	

	 {Q}		{Q1}			S		{R}	 	 	 	 	 {Q}		S		{R1}		{R}	

And	here	is	how	we	define	what	this	means:	

																	Hoare	triple	including	implication	 	 Hoare	triple	including	implication	
	 	If			Q	=>	Q1			and			{Q1}		S		{R},	 	 	 If	{Q1}		S		{R1}				and			R1	=>	R	
	 	then		{Q}		S		{R}	 	 	 	 	 then		{Q}		S		{R}	
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