
Interface	Iterator	

The words enumerate and enumeration

An enumeration of a collection of elements is a complete listing of all the elements in it. Here’s an enumeration
of the set of values in 3..6: 3, 4, 5, 6. Here’s an enumeration of the days of the week: Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday. We can also enumerate the seasons: winter, spring, summer, fall.

Iterators

An iterator over some collection —a set or list of elements, for example— is an object that provides methods
that help you write a loop to enumerate and process each element in the collection. The iterator will provide two
methods:

 hasNext(): Is there another element to enumerate?

 next(): Return the next element to enumerate —throw an exception if there are no more.

We show you how an iterator is used. Suppose we have

 Integer[] b= new Integer[]{5, 2, 4, 6, 3, 2};

and an iterator it that will enumerate the even values of b. We write the following loop:

 while (it.hasNext()) {
 Integer n= it.next();
 Process n;
 }

Each iteration of the loop enumerates another element, using the call it.next() to calculate and return it, and process-
es it. Execution of this loop will execute the following Process steps, ignoring the odd values in the array:

 Process 2; Process 4; Process 6; Process 2.

Study the above while-loop carefully. Any loop that uses an iterator to enumerate and process the values in some
collection should be written exactly like this.

We show you how to write this iterator in the next video.

Interface Iterator

An iterator is a class that implements interface java.util.Iterator, whose documentation can be found
here:

 docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Besides methods hasNext()and next()shown above, Iterator has two more methods.

 Remove()Remove the last element enumerated by this iterator. The default method throws an
 UnsupportedOperationException. We never implement this method, so if the user
 attempts to use it, the exception will be thrown. In many cases, it is difficult to implement
 properly.

 forEachRemaining(…): This method is outside the scope of this introduction to iterators and we will
 not use it.

So, we generally use only methods hasNext() and next().

