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The fields for implementing the set 

We use an array b of type E[] for the buckets. We want the space required for the booleans to be a minimum: one 
bit per boolean. However, a Java boolean array is implemented with each boolean take at least a full byte —8 times 
as many bits as is necessary! But Java class java.util.BitSet does implement a collection of booleans with 1 bit per 
boolean. The name is ill chosen; it should be called BitList, not BitSet, because it implements a list of bits that 
grows as needed, much like an ArrayList. It has the obvious method calls get(i), set(i) to set the bit to true, and 
flip(i) to flip the bit. So, we declare field in. 

Let’s write down the class invariant; we’ll use array notation for in. 

 /*  (1) The set consists of the b[i] for which in[i] is true.  
  *       No element is in b more than once. 
  * (2) b[i] = null implies in[i] is false 
  (3) If an element hashed to h but was placed in b[h+k] (with wraparound), 
        then all elements b[h..h+k] are not null. 
  (4) To remove b[i] from the set, set in[i] to false */ 
 private E[] b; 
 private BitSet in; 

We need a field to contain the size of the set and a field load, which contains the number 
of b[i] that are not null —if elements are removed, load > size. We’ll see how load is used 
later. 

Method linearProbe 

With this definition, we can write method linearProbe to search for element e, returning either the bucket where 
it resides or the null bucket that ended the search. First, hash e to get a bucket number h. Now perform a 
conventional linear search but with wraparound, starting at b[h]. The search should stop when either e or null is 
found, so we write the invariant. Then, the initialization and loop is written in standard fashion. Index i is returned. 

 /** = index in array b of e or where e will be put (using linear probing). 
    *    Precondition: e may not be null. */ 
     private int linearProbe(E e) { 
     assert e != null; 
     int h= Math.abs(e.hashCode() % b.length); 
     int i= h; 
     // inv: e is not one of b[h..k+i-1] (with wraparound) 
     while (b[i] != null  &&  !e.equals(b[i])) {  
         i= (i+1) % b.length; 
     } 
     return i; 
     } 

We write method add. First, call linearProbe and store the result in h. There are now three cases to consider: 

1. in[h] is true. By the class invariant, e is already in the set, in b[h]. 
2. in[h] is false and b[h] is not null. Then b[h] = e, and e can be added to the set by setting in[h] to true. 
3. in[h] is false and b[h] is null. Then e is to be placed in b[h] and in[h] has to be set to true. 

In handling these cases, we also have to maintain fields size and load and also rehash if necessary. Here we go. 

First, if in[h] is true, e is already in the set, in b[h], and false is returned. 

Next, since in[h] is false, e has to added to the set, so the size of the set is increased and bit b[h] is set to true. If 
b[h] is not null, then b[h] equals e. This means that e was previously removed from the set. Nothing more needs to 
be done and true is returned. 

Finally, since b[h] is null, e is stored in b[h] and the load is increased by 1, since 1 more element of b is non-null.  
The set is rehashed if necessary, and true is returned since e was added to the set. 
  

First,  
 
Second, since null is 
not allowed in the 
set,… 
 
Third, to enforce that 
remove cannot set an 
element to null,  
 
Fourth, this is not part 
of the invariant but just 
a reminder about what 
remove does 



Hashing	with	linear	probing	(part	2)		

 /** Ensure that e is in this set and return value of sentence 
       "e was added because it was not in the set." */ 
 public boolean add(E e) { 
     int h= linearProbe(e); 
     if (in.get(h)) return false; // e is already in the set 

     size= size + 1; 
     in.flip(h); 

     if (b[h] != null) { // e was in the "removed" state. Put it back in. 
         return true; 
     } 

     // e is not in set and is to be placed in b[h] 
     b[h]= e; 
     load= load + 1; 
     if (load > .75 * b.length) rehash();  // b is too small 
     return true; 
 } 


