
Problems	with	typical	array	implementations	of	sets		

A mathematical set is simply a bunch of distinct, or different, elements. The typical 
operations on a set s appear to the right. 

A simple implementation uses an array b, with, say, the n integers occupying 
b[0..n-1]. We show an example with n = 5. 

 

 

 

A request to add an element involves first determining whether the element is already in b[0..n-1], because it 
can’t be added if it’s already there. Similarly, a request to remove an element involves determining whether the ele-
ment is in b[0..n-1]. 

A search for e is typically made starting at the beginning and looking at every element until e is found —or until 
the end is reached, meaning e is not in the set. This takes expected-case time O(n) and worst-case time O(n), so op-
erations add and remove take O(n) time. 

 

 

 

If the elements are from an ordered set, we could keep b[0..n-1] in ascending order and then use binary search to 
see whether a value is in the set. This reduces the look-up time to O(log n). However, operation add would still take 
expected-case and worst-case time O(n) because adding a very small value requires moving everything up one ele-
ment. For example, adding 2 to (1, 3, 4, 5, 8) requires moving (3, 4, 5, 8) up one position in the array. 

Methods for set s 
s.isEmpty() 
s.size() 
s.add(e) 
s.contains(e) 
s.remove(e) 

5					8					3					4					1	
0					1					2					3					4					n	

b	

1					3					4					5					8	
0					1					2					3					4					n	

b	


