
Methods	wait	and	notifyAll	

We provide an example that shows the need for two more thread methods: wait() and notifyAll(). We implement
a “dropbox”, a place where threads, called producers, can deposit an integer for other threads, called consumers, to
pick up. A dropbox is like a vending machine that can hold only one item, one candy bar, and if there is no candy
bar in it, you have to wait until the vendor puts one there.

A producer wanting to put a new integer into a full dropbox must wait until a consumer takes the current integer
out. A consumer wanting to take out an integer must wait until there is one there.

To implement waiting, Java maintains two lists for a synchronized object sob.

1. The locklist: The list of threads that are waiting to obtain the lock on sob; they are ready to execute a
synchronized statement or method.

2. The waitlist: The list of threads that had the lock but couldn’t proceed because sob was not in a suita-
ble state (e.g. a consumer found the dropbox empty). So they executed method wait(). They are wait-
ing until the state of sob changes.

Suppose a thread t uses a synchronized statement or method to acquire the lock on sob. Two things can happen:

1. Thread t can’t complete its task (e.g. a consumer finds the dropbox empty). Therefore, t executes a call
wait(), which puts t on the waitlist and makes it relinquish the lock on sob. Thus, another thread can
obtain the lock. Of course, when t is given another chance, t’s call on wait() completes and t continues
executing from that point.

2. Thread t can complete its task. It does so and executes a call notifyAll(). This call moves all threads
from the waitlist to the locklist. Why? Thread t changed the state of sob, so threads on the waitlist may
now be able to complete their task. Moving them to the locklist gives them a chance to try again.

Class Dropbox

Class Dropbox has two fields: full tells whether the Drop-
box contains an integer; if it does, the integer is in field box.

The two calls on wait() are in try-statements; this is neces-
sary because an InterruptedException may be thrown while
the method is waiting.

A consumer will call method take(). Suppose the call gets
the lock and the Dropbox is full. The while-loop terminates.
Field full is set to indicate that the Dropbox is empty, notify-
All() is called to move all threads on the waitlist to the lockist,
and the value in box is returned.

Suppose the call take() gets the lock but the Dropbox is emp-
ty. Then wait() is called, so the thread is put on the waitlist
and gives up the lock. When it is given another chance, exe-
cution wait(),the try-statement, and the repetend all terminate
and the while-condition !full is evaluated again.

Why is a while-loop necessary? Suppose an if-statement is
used instead; the method body is:

 if (!full)
 try {wait();} catch (…) {}
 full= false; notifyAll(); return box;

Consider this execution sequence: (1) take() is called and the
dropbox is empty. The call wait() is executed. (2) A producer
puts an integer into the dropbox and does notifyAll(). (3) A different consumer is given the lock and takes the value
out, thus emptying the buffer. (4) This consumer is given the lock; its call wait() completes, and it continues as if the
dropbox were full, but it is not. The while loop is needed to make sure that a consumer processes normally only if
the dropbox is full.

Another reason for the while-loop: If an InterruptedException is thrown and caught, full might be false.

/** An instance is a dropbox: A place for
 * producers to store an integer and for
 * consumers to take it out. */
class Dropbox {
 private boolean full= false; // = "box is full"
 private int box; // dropbox value (if full)

 /** Wait for box to hold an integer;
 * then take it out and return it. */
 public synchronized int take() {
 while (!full) {
 try {wait();}
 catch (InterruptedException ex) { }
 }
 full= false; notifyAll(); return box;
 }

 /** Wait for box to be empty; put n into it. */
 public synchronized void put(int n) {
 while (full) {
 try {wait();}
 catch (InterruptedException e) {}
 }
 box= n; full= true; notifyAll();
 }
}

Methods	wait	and	notifyAll	

A producer calls method put(int) to put an integer in-
to the Dropbox, but if the Dropbox is full, the producer
must wait until it is empty. The structure of method
put(int) is similar to that of method take(), and we leave
you to study it.

A complete application

To the right, we show a class Main that creates two
Consumer threads and one Producer thread and starts all
three executing.

Class Consumer alternately takes a value from a
Dropbox and sleeps. Class Producer is similar.

The producers and consumers are given the Dropbox
with which to work as a parameter of their constructors.
This is a typical way to write such classes. It is more
flexible than the method used in pdf file 6 under the Ja-
vaHyperText entry for Threads, which used instead a
public static variable declared in the main class.

We have placed a println statement in the while-loop
of the Consumer’s method run(). Put these classes into
an Eclipse or DrJava project and execute this application
and see what happens. Add other println statements to
class Dropbox, if you want, in order to see how the Pro-
ducer and two Consumers work together.

What about method notify()?

Method notifyAll() moves all threads from the wait-
list to the locklist. There is a method notify(), which in-
stead moves only one thread, chosen arbitrarily, from the
waitlist to the locklist. Using notify() instead of notify-
All() may work, but in some cases it causes deadlock —
no process can make progress. Don’t use notify() unless
you know what you are doing.

The following document in JavaHyperText entry
Threads explains why notify() may not work:

 Warning: use notifyAll and not notify unless
 you know what you are doing.

import java.util.Random;

public class Main {
 /** Create two Consumer threads and a
 * Producer thread and start all three. */
 public static void main(String[] args) {
 Dropbox box= new Dropbox();
 new Thread(new Consumer(box)).start();
 new Thread(new Consumer(box)).start();
 new Thread(new Producer(box)).start();
 }
}

/** An instance alternately takes an integer
 * from a Dropbox and sleeps */
public class Consumer implements Runnable {
 private Dropbox box;

 /** Constructor: a Consumer using db */
 public Consumer(Dropbox db) {box= db; }

 /** Forever: Get a value from the Dropbox
 * and sleep for a random time. */
 public void run() {
 Random random= new Random();
 while (true) {
 int i= box.take();
 System.out.println(
 Thread.currentThread().getName() +
 " " + i);
 try {
 Thread.sleep(random.nextInt(100));
 } catch (InterruptedException e) { }
 }}}

/** An instance repeatedly sleeps and
 * puts a random number into a Dropbox. */
class Producer implements Runnable {
 private Dropbox box;

 /** Constructor: a Producer using db */
 public Producer(Dropbox db) {box= db;}

 /** Forever: sleep for a random time and
 * put a random number into the Dropbox. */
 public void run() {
 Random random= new Random();
 while (true) {
 int n= random.nextInt(10);
 try {
 Thread.sleep(random.nextInt(100));
 } catch (InterruptedException e) { }
 box.put(n);
 }}}

