
Cores	and	processing	units,	processes	and	threads	

The image to the right is part of a table of 
the Activity monitor on a Macintosh laptop. It 
was created in 2015. The table shows a few of 
the over-100 processes that were being concur-
rently executed. Some are applications that the 
user opened, like Eclipse, PowerPoint, Safari, 
and the Activity Monitor itself. Many of them 
are parts of the operating system —keeping it 
functioning properly and reacting to events. 

The second and third columns give the per-
cent of the CPU (Central Processor Unit) time 
and the CPU time itself that the processor took 
in the past period of execution for which statis-
tics were kept. 

A processing unit is part of the computer that actually executes a sequence of machine instructions. CPU is a 
term from the past, when computers had one processing unit, called the Central processing unit. If there is only one 
unit, only one process can be executed at a time. The operating system cycles through the processes, giving each a 
“time slice” of execution1. Different processes have different priorities, and the higher priority threads get more 
time. The operating system has a scheduler —itself a process— which is able to interrupt a process that is currently 
running and determine which process should run next. Depending on the computer and its speed, the time slice 
could be around 100 milliseconds. 

Nowadays, the processor on your computer, a chip, generally has several independent processing units called 
cores, each of which is able to execute a (different) sequence of instructions. The 15-inch Macbook Pro on which 
this little essay is being typed, built in 2014, has one four-core processor, so the operating system has to manage 4 
processing units in giving processes time slices. You can now buy Intel processors with 10 or more cores. 

Look at the last column of the table. Eclipse has 54 threads. Safari has 24. A thread is a sequence of instructions 
that is being executed or is waiting to be executed. Most applications start and stop threads at various times. For 
example, suppose a Java GUI program that you wrote is running in Eclipse. When you click a button of the GUI, a 
new thread of execution is created to process the click. The new thread will contain the code that calls the method 
that processes the click. This thread runs in parallel with any other threads that your Java program has created. 

Eclipse has many more threads going. Some handle the editing that you are doing, others are involved in syntax-
checking and compiling Java classes as you edit them, others in updating the Eclipse window, and so on. 

Java has features that allow you, the programmer, to create and destroy threads of execution. You can use those 
features to write your own parallel program. For example, you could write a program that simulates a home heating 
system, with different threads for the furnace, the temperature inside the house, the temperature outside the house, 
and the thermostat. 

Exercise 

Start your Activity Monitor (it’s called the Resource Monitor in Windows) and watch the table for a minute, see 
how it changes. Start Eclipse, and move your windows around on your monitor so that you can see windows of both 
Eclipse and Activity Monitor. Add a static method with an infinite loop to some class, and call that method. See how 
a process called java appears, how many threads it has, and how much CPU time it takes. Do the same thing with 
DrJava. This exercise will reinforce what you read and make it more meaningful. 

																																																								
1 A paper titled Time Slices: What Is the Duration of a Percept?, written by Herzog, Kammer, and Scharnowski and 
published on 12 April 2016, suggests that your brain time slices also, with slices being as much as 400 milliseconds. 
See https://doi.org/10.1371/journal.pbio.1002433. 


