Testing that an exception was thrown

Suppose this call on method m is supposed to throw an ArithmeticException:
A.m(null);

You want to check in a JUnit 4 testing procedure that the call throws the exception. Do it with this procedure:
@Test

public void test() {

try {
A.m(null);
fail();

catch (ArithmeticException e) {}

}

In analyzing execution, we consider three cases:

The call throws an ArithmeticException. The exception is caught by the catch-block and catch-block and the
try-statement terminate normally.

The call throws some other exception. The exception is not caught and is thrown out further, so the procedure
fails. That is what it is supposed to do.

The call does not throw an exception. The statement fail() is executed, which throws an AssertionError, which
is not caught by the catch-block and is thrown out further, so the procedure fails. That is what it is supposed to
do.

We make two points about this code.

You may need to use this pattern many times, and since it is standard, a paradigm, it’s OK to scrunch it up to
take two lines:

try {A.m(null); fail();}
catch (ArithmeticException e) {}}

That makes it easy to place it among all the other tests that are being performed on method A.m.

You can use this pattern to test that a method throws any exception (just replace ArithmeticException by anoth-
er exception). But don 't use it for the exception AssertionError. Here’s the reason. The call fail() always throws
an AssertionError, which will then be caught by the catch-block, and it doesn’t work right. See the JavaHyper-
Text entry for “Junit testing” to see how to check whether an assert statement does it job.



