
Introduction	to	synchronized	

You know that an int variable x shared by two threads may be involved in a race condition because even the
assignment statement

 x= x + 1;

is not an atomic, indivisible, action —it is executed as a sequence of three steps: (1) load x into a register, (2) add 1
to the register; (3) store the register into x.

A critical section is a code segment that has to be executed as an atomic action. We now show how to make a
critical section into an atomic action.

The synchronized statement

Each object in Java has a “lock”, which a thread can obtain in order to keep other threads from using the object.
Execution of a statement

 synchronized(object) { … }

waits until no other thread has the lock on object; it then obtains the lock, executes the code { … }, and finally relin-
quishes the lock. That’s all there is to it!

Synchronizing on a primitive value is not possible; it has to be an object. (i.e. a pointer to an object)

Example

First, we write class X, which contains variable x, as shown to the right. Variable x
is to be shared by two threads. It is wrapped to make this possible.

Class FirstSync declares static variable var of type X. Object var contains the varia-
ble x to be shared. Method main starts threads T1 and T2 running.

Look at T1. Its method main contains the assignment that
increments shared variable FirstSynx.var.x, but that assignment
is synchronized on FirstSync.var; it looks like this:

 synchronized(FirstSync.var) {
 FirstSync.var.x= FirstSync.var.x + 1;
 }

When this statement is executed, T1 obtains the lock on
FirstSync.var. Therefore the assignment is performed as an
atomic action in that any other thread that attempts to execute a
statement synchronized on FirstSync.var must wait until this
one is finished.

Now look at thread T2. Its method run also has a statement
that synchronizes on shared object FirstSync.var. This syn-
chronized statement doubles shared variable x.

Better organization

The organization of this program is not good in that in writ-
ing each thread, the programmer has to worry about whether
statements should be synchronized or not. It would be better if
the shared object itself could do all the synchronizing. This
means that the threads would call methods in the shared object.

We show this on the next page.

public class X {
 public int x= 0;
}

public class FirstSync {
 public static X var= new X();

 public static void main(String[] arg) {
 new T1().start();
 new T2().start();
 }
}

public class T1 extends Thread {
 public void run() {
 …
 synchronized(FirstSync.var) {
 FirstSync.var.x= FirstSync.var.x + 1;
 }
 …
 }}

public class T2 extends Thread {
 public void run() {
 …
 synchronized(FirstSync.var) {
 FirstSync.var.x= 2*FirstSync.var.x;
 }
 …
}}

Introduction	to	synchronized	

To the right, we show the reorganized class X. We have re-
moved comments to save space —the methods are simple enough
to understand without them.

Field x is now private, providing more security. Function getX
returns its value.

Function incr contains a synchronized statement, synchronized
on this object itself. Remember, “this” evaluates to the pointer to
the object in which it appears.

Look at method doubble —we call it doubble instead of double
because double is a Java keyword. Method doubble shows a new
feature: a synchronized method. It is simply syntactic sugar; the
following two are equivalent:

 public void m(…) {
 synchronized(this) {statements}
 }

 public synchronized void m(…) {statements}

The synchronized statement is more flexible, in that the whole
method need not be synchronized. But if the whole method will be
synchronized, use a synchronized method.

To the right, we show the modified classes T1 and T2. Instead
of having synchronized statements, they call methods in the shared
object.

public class X {
 private int x= 0;

 public int getX() {return x;}

 public void incr() {
 synchronized(this) {x= x + 1;}
 }

 public synchronized void doubble() {
 x= 2*x;
 }
}

public class Sync {
 public static X var= new X();

 public static void main(String[] arg) {
 new T1().start();
 new T2().start();
 }
}

class T1 extends Thread {
 public void run() {
 …
 FirstSync.var.incr();
 …
 }}

class T2 extends Thread {
 public void run() {
 …
 FirstSync.var.doubble();
 …
 }}

