
Hiding	static	methods	

	

Static methods can be redeclared in a subclass, but the effect is not overriding but hiding. In the program shown
below, placing the annotation @Override on method m in subclass S will result in a syntactic error and the program
will not compile.

We illustrate hiding of static methods with an example. Calling method Test.main, given below, results in this
output, which we discuss.

 C.m called
 C.m called
 S.m called
 C.m called

In method Test.main, first an object of class C is created and (a pointer to it is) stored in c. The result is shown
below, with variable c containing a pointer to the new object.

Then, method m is called in the preferred way, using class name C: C.m(). Then, m is called using c.m(). By the
inside-out rule, one looks in object C@4 for method m(), then in the enclosing scope, where method m() is found.
You see in the output shown above that method m in class C was called twice.

Next, an object of subclass S is created and stored in variable s whose type is C. The result is shown below, with
variable s pointing at object S@60.

Then, method S.m is called in the preferred way, using class name S: S(m).

The next call, using s.m(), illustrates that overriding does not happen. According to the overriding rule, method
m declared in subclass S should be called, but it is not! Instead, since the type of variable s is C, the static method
declared in class C is called, resulting in “C.m called” being printed.

So, in this special case of hiding a static method (or variable), the type of the pointer to the object dictates which
static method is to be called.

m()

C@4

C

Container	for	C’s	objects	
and	static	components	

m()

S@60	
C	

Container	for	S’s	objects	
and	static	components	

S	

c s C@4 S@60
C C

public class Test {
 public static void main(String args[]) {
 C c= new C();
 C.m();
 c.m();

 C s = new S();
 S.m();
 s.m();
 }
}

class C {
 public static void m() {
 System.out.println("C.m called");
 }
}

class S extends C {
 public static void m() {
 System.out.println("S.m called");
 }
}

