Raw type

In 2004, Java 5 came out, with generics added to it. Class ArrayList had been genericized, so it was declared like
this:

public class ArrayList<E> extends AbstractList<E> implements ... { ... }

From then on, one could use generic types like AbstractList<String> and AbstractList<JFrame>. Programming be-
came more “type safe” and easier.

But for backward-compatibility, all the code written using Java 4 had to work in Java 5. For example, the new
expression new ArrayList() had to still be syntactically correct and work as it did before.
Definition: The raw fype is the generic type without any arguments.

For example, ArrayList<String> and ArrayList<JFrame> are generic types, while ArrayList is a raw type.
Whenever it is possible, we urge you to follow this:
Strong suggestion: Don’t use the raw type of a generic class. Example: Don’t use ArrayList by itself unless you
really have to.

Below, we discuss what may happen when using a raw type.

Using a raw type

You can mix uses of raw types and generic types, but the compiler will give a warning if it cannot tell whether a
statement or expression is type safe.

Consider the code to the right, where b’s type is a raw type. A
warning is given on the call to b.add because it cannot be determined
what type of elements are allowed in b. The warning is: “unchecked
call to add(E) as a member of the raw type java.util. ArrayList”. There
is no warning for the fifth line, but it’s obvious that a class cast excep-
tion will be thrown at runtime because b.get(0) is not an Integer.

ArrayList b;

b= new ArrayList<String>();

b= new ArrayList();

b.add("abc"); // unchecked warning
Integer s= (Integer) b.get(0);

With the code to the right, the compiler issues as unchecked con-
version warning because a raw-type c is stored in variable b of type
ArrayList<String>, and it is not known what values are in ArrayList c.
It’s the programmer’s duty to known that ¢’s array elements are only

ArrayList c=new ArrayList();
ArrayList<String> b= c; // unchecked
// conversion

of type <String> (or null). b.add("abe")

This last example was culled from a much larger program and
changed to illustrate two points. In class W<E>, field f is public, so it can be class W<E> {
changed either by storing directly into it or by calling setter method set. public E f;

) . . public void set(E p) {f=p;}
The type of parameter of function M.test is raw type W. Warnings for the )

two statements in the body of method test are given because it cannot be de-

termined that the type of value assigned to fis E: class M {
Warning: unchecked call to set(E) as a member of the raw type W public void test(W w) {
Warning: unchecked assignment to variable f as member of raw type W w.set(new M()); //warning
) ) w.f=new M(); // warning
Change the declaration of parameter w of method test to the following and )
the warnings disappear. }

W<M>w



