
Primitive	number	types	

	

Values of each of the primitive number types

Java has these 4 primitive integral types:

 byte: A value occupies 1 byte (8 bits). The range of values is -128..127
 short: A value occupies 2 bytes (16 bits). The range of values is -2^15..2^15-1
 int: A value occupies 4 bytes (32 bits). The range of values is -2^31..2^31-1
 long: A value occupies 8 bytes (64 bits). The range of values is -2^63..2^63-1

and two “floating-point” types, whose values are approximations to the real numbers:

 float: A value occupies 4 bytes (32 bits).
 double: A value occupies 8 bytes (64 bits).

Values of the integral types are maintained in two’s complement notation (see the dictionary entry for two’s
complement notation). A discussion of floating-point values is outside the scope of this website, except to say that
some bits are used for the mantissa and some for the exponent and that infinity and NaN (not a number) are both
floating-point values. We don’t discuss this further.

 Generally, one uses mainly types int and double. But if you are declaring a large array and you know that the
values fit in a byte, you can save ¾ of the space using a byte array instead of an int array, e.g.

 byte[] b= new byte[1000];

Operations on the primitive integer types

Types byte and short have no operations. Instead, operations on their values
are treated as if the values were of type int. For example, suppose b is of type
byte. Then the expression b+1 has type int.

The operations of types int and long are given in the table to the right. They
are what one expects, except for one point. The designers of Java included the
principle that int operations must produce an int and long operations must
produce a long. The minimum and maximum values in type int are -2147483648
and 2147483647. Then what is the value of this expression?

 2147483647 + 1

The answer is the smallest value, -2147483648, because the numbers “wrap
around” —e.g. after the largest int value comes the smallest.

no byte/long literals

There are no byte or short literals. But
an assignment like:

 byte b= 127;
will be treated like

 byte b= (byte) 127;

The cast (byte) 127 (see the next page
for casts) will be evaluated at compile-
time. The following won’t compile
because 128 is outside the range of byte:

 byte b= 128; // won’t compile

If you have a function like this:

 public int f(byte b) {…}

the call f(127) will not compile; it must
be written like this:
 f((byte) 127)

int/long literals

Below are five ways to write constants of type int. Follow one
directly with l or L and it is a long, e.g. 123L.

1. A decimal integer that doesn’t begin with 0: 20
2. An octal integer (begin with 0): 020 is the same as 16
3. A hexadecimal integer (begin with 0x, use 1..9 and A..F or

a..f): 0xF is the same as 15. 0x1f is the same as 31
4. A binary integer (begin with 0b): 0b110 is the same as 6
5. Put an underscore ‘_’ anywhere between digits to make it

more readable: 5_300_000 is the same as 5300000

float/double literals

Here are ways to write a double literal. Follow it by F or f and it
is a float literal.

1. 125.3 (anything with ‘.’ in it is a floating point number)

2. 1.253E2 or 1.253e2 Same as 125.3 but in scientific notation
3. 1253E-1 Same as 125.3 but in scientific notation

int and long operations

- b negation
+ b no change
a + b addition
a - b subtraction
a * b multiplication
a / b integer division
 9 / 2 is 4
a % b remainder
 9 % 2 = 1

Primitive	number	types	

	

Narrower-wider types and assignment

We order the primitive number types as follows:

Each type is called wider than the ones to its left because it contains all the values of the types to its left and more.
For example, every value of type byte is also a value of type short. The opposite of wider is narrower.

Since a long value occupies 64 bits and a float value only 32, you might question that float is wider that long.
But remember that floating point numbers are only approximations to real numbers and are rarely exact. So,
converting a long to a float value produces the closest float approximation to the long.

In Java, an assignment to a primitive type variable is syntactically correct and will compile only if the expression
has the same or a narrower type than the variable. This prohibits information being lost or changed. For example:

int k= 55.3; // will not compile because float (the type of 55.3), is wider than int
long v= 55; // will compile because long is wider than int.

Casting between primitive number types

The expression (float) 5 is called a cast of int value 5 to type float. For each primitive number type T, the cast
operator (T) is a unary prefix operator. Cast (T) v converts v to its representation in type T.

Widening casts are done automatically when required. Here’s information about widening casts.

1. A widening cast to an integral type (e.g. int to long) preserves the value.
2. A widening cast to a floating point type changes the value to the closest possible approximation to the value

in the new type. Further discussion is beyond the scope of these webpages.

Narrowing casts must be explicitly requested. For example, here is how to add 1 to byte variable b:

 b= (byte) (b+1);

Here’s information about narrowing casts.

1. A narrowing cast from one integral type to another preserves the value if the value can be represented in the
resulting type. Otherwise, the resulting value depends on the wrap-around properties of integral types. For
example, since 127 is the largest value of type byte, the value of (byte)128 is -128, the smallest value of
type byte.

2. A narrowing cast from double to float, like (float) 5.2 , is done using rules that are beyond the scope of
this webpage. Some precision will be lost.

3. A narrowing cast from a floating-point type to an integral type, like (short) 5.2 , first requires converting
the floating-point value to the closest possible integer, using rules that are beyond the scope of this webpage.
Then, that value may require a cast to a narrower integral type, using the method shown in point 1. Note this
example: The value of expression (int) 1E200 is the largest int value, 2147483647.

Sequences of casts are performed from right to left, since a cast is a unary prefix operator. We illustrate this:

 (byte) – (int) -128L // (1) cast -128L to int, giving -128;
 // (2) negate -128 giving 128;
 // (3) cast 128 to byte, giving, because of wrap-around, -128

Type char

Primitive type char is also an integral number type. Each char value is represented by an integer, and one can
cast between them, e.g.

 (int) 'a' evaluates to 97
 (char) 97 evaluates to 'a'

Look under the dictionary entry for char for a complete discussion of type char.

byte short int long float double
narrower wider

