
Javadoc	

Javadoc is Java’s application that extracts documentation from a Java program. It is generated in html format so
that it can be viewed in webpages. All the documentation for the Java 8 API classes was generated by the javadoc
application and placed at this URL: https://docs.oracle.com/javase/8/docs/api/

You can see the first page of such output for our assignment A1 solution on the next page.

Eclipse uses javadoc comments to help you when you
are editing Java code, and that’s a good reason to
continually keep your javadoc comments up to date. To
the right is method numAdvisees. The javadoc comment
on the line before it contains the method’s specification.

Suppose you are looking at another class in Eclipse, and you
see a line like that to the right, containing a call on numAdvisees.
You forgot what numAdvisees does, what its specification is.
Your first inclination is to turn to that first class and look at the
declaration and spec of numAdvisees. But don’t that!

Instead, hover your mouse over the function call and
wait a second or two. A window pops up, which contains the
method signature together with the specification that was in
the javadoc comment!

Eclipse will give you the specification of any method or
public field —static or non-static— as long as the spec is
given appropriately in an javadoc comment.

What is a javadoc comment?

A javadoc comment is a comment that begins with “/**” and ends with “*/”. If placed before a public method
declaration (not after, as in Python), a public field declaration, or a public class declaration, it will be extracted (we
show how to do this later) and placed as the comment for that method, field, or class. The reader of the javadoc-
extracted material will see only that material, and not the source code itself.

What are the rules for writing javadoc comments?

Our main rule is that the javadoc comment precisely, thoroughly, and clearly define the method or variable or
class that it describes. We tend to write short, simple, laconic, and clear specifications. For example, our method
specs always mention the parameters of the method by name and precisely explain their use. You would do well to
be aware of the format and simplicity of our specifications as you read them and try to emulate the style when
writing your own specs.

Java does have some guidelines for writing specs. We don’t follow them all because they lead to longer more
verbose specifications, and ones that are often not as precise. You can find the guidelines on this wikipedia
webpage: https://en.wikipedia.org/wiki/Javadoc. We make two remarks.

1. The first sentence of the javadoc specification for a method —defined as up to the first period “.”— is
expected to be a summary. Only this sentence will appear in the “Method Summaries” of the extracted
output, but the whole specificaton will appear in the “Method Detail”.

2. Various annotations like @param, @return, @author, and @throws can be used. We don’t use them
because our specs are clearer and shorter without them. You may get a warning if you don’t use @param
or @return. Just ignore the warning —or turn such warnings off.

In Eclipse, How do I extract the javadoc specification?

In Eclipse, use menu item Project -> Generate javadoc … . A window will open, asking you for the destination
where the files should be placed. Use the default one, which is folder doc in the current project. Click Finish.

Javadoc	

Look in folder doc in the Eclipse project. Double-click on file index.html, and it will open in the same pane in
which java programs appear. You can also look for it in a window on your harddrive and click on it, and it will open
in your favorite (default) browser.

When we double-click on file index.html within Eclipse, the window shown below opens:

