
Writing	a	text	file	

	

Class java.io.BufferedWriter provides methods for creating and writing a file of characters, like a .txt file.
One can create a BufferedWriter for a Path object p using:

 BufferedWriter bf= Files.BufferedWriter(p);

The class has three methods of importance here:

 p.write(s, k, len); // Here, s is a String; write the substring s[k..k+len-1] to the file.
 p.newLine(); // Write a line separator —whatever your OS uses as a separator.
 p.close(); // Close the file. Should be called when no more is to be written on the file.

The class is called a buffered writer because it “buffers” the text. When a call on p.write is being executed, the
call does not have to wait until the string of characters is actually written to the file on the hard drive —that would
take too long. Instead, the characters are added to a buffer, and the call on p.write then terminates. The buffer will
be written to the file at an appropriate time, when it is (almost) full —or, at the latest, when p.close is called.

Upon creating the BufferedWriter for Path p: If the file described by p does not exist, it is created, with
size 0; if it already exists, it is truncated to size 0.

PrintWriter: a solution to two problems with BufferedWriter

There are two problems with class BufferedWriter. First, only String values can be written using procedure
write. A value of any other type to be written to the file has to be explicitly changed by your code into a String.
We have all used procedure System.out.println(…), putting any expression we want as the argument. That
name println is so overloaded that a value of any type can be given as an argument. Why doesn’t Buffered-
Writer allow the same flexibility?

Second, newline characters have to be written explicitly.

To get around these two problems, wrap the BufferedWriter in an object of class java.io.PrintWriter:
 PrintWriter pr= new PrintWriter(bf);

PrintWriter has two overloaded procedures pr.print and pr.println, which work exactly like their counter-
parts in System.out.1 That’s all there is to solving the two problems.

An example

Put this code in some method in an Eclipse project.
 Path p= Paths.get("number.txt");

 PrintWriter pr;
 try {
 pr= new PrintWriter(Files.newBufferedWriter(p));
 } catch (IOException io) {
 throw new RuntimeException("newBufferedWriter threw IO Exception");
 }
 for (int k= 0; k < 10; k= k+1) {
 pr.println(k);
 }
 pr.close();

This code will write a file number.txt in the Eclipse project directory. It will contain 10 lines, each containing one
of the numbers in 0..9. If the file already exists, it is effectively replaced by the new one.

The assignment to pr has been placed in a try-block because the call Files.newBufferedWriter(p) may
throw an IOException. If we don’t use the try-statement, the method will need a throws clause. We would rather
see the complication here rather than need the throws clause on one or more methods.

 Don’t forget the statement pr.close(); at the end. This will flush the buffer, writing out any characters re-
maining in it, and then close this resource.
																																																								
1 Methods printf and format are available too, and work as they do in System.out.

Writing	a	text	file	

	

Appending to a File

It is possible to append to an existing file instead of writing over the existing file. This requires one simple
change. Write the creation of a new BufferedWriter as

 Files.newBufferedWriter(p, StandardOpenOption.APPEND)

The second argument, StandardOpenOption.APPEND, indicates that an existing file should not be deleted and
characters should be added to it. Of course, it also works if the file doesn’t exist yet.

Wow, that’s all there is to it? Yes!

Here’s an example. The following code appends the integers in 0..9 to an existing file.
 Path p= Paths.get("number.txt");

 PrintWriter pr;
 try {
 pr= new PrintWriter(Files.newBufferedWriter(p, StandardOpenOption.APPEND));
 } catch (IOException io) {
 throw new RuntimeException("newBufferedWriter threw IO Exception");
 }
 for (int k= 0; k < 10; k= k+1) {
 pr.println(k);
 }
 pr.close();

