
Reading	a	text	file	

Class java.io.BufferedReader provides methods for reading lines from a file of characters, like a .txt file.
It’s pretty simple. Once a BufferedReader object bf has been created for a file, calling method bf.readLine()
reads and returns a line of text. If there are no more lines to read, bf.ReadLine()returns null. After reading the
file, close the file by calling method bf.close().

We give the pattern that all methods that read a text file should use, assuming that Path p describes the file to
be read:

 // Read and process all lines of the character file given by Path p.
 BufferedReader bf= Files.newBufferedReader(p); // Store a new BufferedReader for p in bf;
 String lin= bf.readLine(); // Read first line. Note: If file is empty, there is no first line.

 // invariant: All lines before line lin have been read and processed, and
 // line lin has been read but not yet processed
 while (lin != null) {
 Process line lin;

 lin= bf.readLine();
 }
 bf.close();

Here are important points about this pattern.

1. Always get a BufferedReader using function Files.newBufferedReader(p).

2. Read the first line before the loop. If the file length is 0, which can happen, lin will be set to null
initially and the repetend will not be executed.

3. The goals of the repetend are: (1) Make progress toward termination, by reading the next line into lin,
and (2) In order to keep the loop invariant true, process line lin before reading the next line. The
meaning of “Process” depends on the context. We give an example below.

4. Once the file has been read, close it, using method bf.close. This statement comes after the loop.

An example

Consider the Eclipse project shown to the right below. We give the code to read and print file data.txt:
 Path p= Paths.get("data.txt");

 BufferedReader bf= Files.newBufferedReader(p);

 String lin= bf.readLine();

 // invariant: All lines before line lin have been read and processed, and
 // line lin has been read but not yet processed
 while (lin != null) {
 System.out.println(lin);

 lin= bf.readLine();
 }
 bf.close();

