
An	example	in	which	instanceof	should	be	used	

In discussing function equals, we showed a case in which function getClass should be use instead of operator in-
stanceof. Here is an example that requires instanceof and not getClass.

Car manufacturer Ferd is preparing for the day when
some cars will be driverless. Ferd is building code that will
be embedded in each car. Ferd has built a class Car that
expects exactly two subclasses: Driver and Driverless, ob-
jects of which are shown to the right. The two subclasses
are needed because, while both kinds of cars have a lot of
similarities, which will be housed in class Car, they obvi-
ously have big differences —e.g. a driverless car may not
even have a steering wheel. Ferd hired two other firms to
write the subclasses.

A driverless car has software that will actually park the
car.

To park a car, procedure parking in class Car has to call method park
in class Driverless. But procedure parking has to determine whether the
car is driverless and only then call park. This method appears to the right.

But this doesn’t work!

 Manufacturer Ferd did not know that the firm
that built class Driverless felt it useful to
have subclasses of Driverless, and one of
them is shown to the left. It’s for a car that has
 a steering wheel.

In this object, this.getClass() is an object that
describes class HasWheel, not class Driver-
less. The correct way to write procedure park
is shown to the right. It uses operator in-
stanceof.

Moral of the story: To determine whether an object ob has a partition named C, use

 ob instanceof C

To determine the class of object ob, use

 ob.getClass()

	

s S@6dfe	
 S

toString()																			

	
	
	
																	toString()()	

Car	

Driver	

Car@6
dfe	

t S@4	
 S

toString()																			
parking()	
	

	
					park()			tostring()	

Car	

Driverless	

Car@4	

t S@4	
 S

toString()																			
parking()	
	

	
					park()		to	String()	

Car	

Driverless	

Car@4	

HasWheel	

/** If this is a driverless car,
 * call park(). */
private void parking() {
 if (this.getClass() ==
 Driverless.class) {
 (Driverless) park();
}

THIS METHOD IS CORRECT
/** If this is a driverless car,
 * call park(). */
private void parking() {
 if (this instanceof Driverless) {
 (Driverless) park();
}

