
The	inside-out	rule	

	

The inside-out rule is used to determine the declaration to which a variable reference or method call corresponds.
We illustrate with an example.

The box below contains objects of class C and all static variables and static methods declared in class C. Look at
the red y in method m in the rightmost object of class C. To determine the declaration to which it corresponds, start
looking in the closest scope, then in its surrounding scope, etc., until the appropriate declaration is found.

In this case, in the leftmost object shown below, the three scopes within the method have been outlined as
rectangles. Thus, look:

first in the declarations in the block (marked (1));
then in the declarations in the surrounding scope (marked (2));
then in the declarations in the surrounding scope, the parameter declarations (marked (3));
then in the declarations in the surrounding scope, the fields and methods in the object (marked (4)) —if

looking for a method, use the bottom-up rule;
and finally in the static variables and declarations (marked (5)).

If no appropriate declaration is found, the variable reference or method call is syntactically incorrect and the
program will not be compiled.

	

Static	variables	and	methods	declared	in	C	

C@4000

d 5

m(declarations) {
 declarations
 if (exp) {
 declarations;
 … y …
 }
 …
}

C

C@1a

d 5

m(declarations) {
 declarations
 if (exp) {
 declarations;
 … y …
 }
 …
}

C

Container	for	C’s	objects	and	static	components	

	
(1)	
(2)	(3)	

(4)	

(5)	

