
The	wildcard	?	

To the right is a simple method to print the elements of an
ArrayList. The type of elements is Object so that, ostensibly,
elements of any ArrayList can be printed. But the following
code doesn’t even compile:

 ArrayList<Integer> c= new ArrayList<>();
 c.add(3); c.add(4);
 print(c);

Why? As explained in a pdf file in the JavaHyperText entry for generics, ArrayList<Integer> is not a subclass of
ArrayList<Object>, so the argument type is not the same as or narrower than the parameter type.

To write this generic print method, use the wildcard ?, as shown
to the right1. The notation ArrayList<?> stands for “an ArrayList of
elements of any type”. Use this method instead of the first one
above, and the code above is syntactically correct, as is also the fol-
lowing:

 ArrayList<String> d= new ArrayList<>();
 d.add("ab"); d.add("cd");
 print(c);

Using more than one wildcard

Consider class Pair again, as shown to the right. The fol-
lowing method has two wildcards.

 /** Print p. */
 public static void print(Pair<?, ?> p) {
 System.out.println(p);
 }

These wild cards can be associated with different values, as they
do in this code:

 Pair<Integer, String> p3= new Pair<>(3, "abc");
 print(p3);

Notes

1. We have just scratched the surface of a rather confusing set of rules for the use of the wildcard. Further items in
the JavaHyperText entry for generics provide more detail.

2. Do not use a wildcard in a return type (e.g. public static Pair<?, ?> p() {…}) because it forces the user of the
method to deal with wildcards.

3. ArrayList<Object> and ArrayList<?> are not the same. You can add any object to an ArrayList<Object>. The
only thing you can add to an ArrayList<?> is null, because null is the only value that can go into any ArrayList.

4. We said in our introduction to generics that Java generics are defined in terms of type erasure. Generics provide
more type safety, but almost all aspects of generics are erased from the program before it is compiled. You can see
evidence of this yourself. Place both print methods that appear above into a Java class. You will get this compile-
time error message: Error: name clash: print(java.util.ArrayList<?>) and
print(java.util.ArrayList<java.lang.Object>) have the same erasure.

																																																								
1 The term wild card comes from some card games, played with a deck of 52 cards. If a card, say the two of clubs, is
a wild card, the player holding it may give it any value they want.

/** Print elements of b, one per line. */
public static void print(ArrayList<Object> b) {
 for (Object e : b)
 System.out.println(e);
}

/** Print elements of b, one per line. */
public static void print(ArrayList<?> b) {
 for (Object e : b)
 System.out.println(e);
}

/** An instance contains an ordered pair. */
public class Pair<E, F> {
 public E first; // First element
 public F second; // Second element

/** Constructor: a pair e, f */
 public Pair(E e, F f) {
 first= e;
 second= f;
 }

 /** return a representation of this pair. */
 public @Override String toString() {
 return "(" + first + ", " + second + ")";
 }
}	

