
Bounded	wildcards	made	simple	

The topic of bounded wildcards is often cloaked in mystery. We attempt to introduce the
topic in a way that uncloaks the mystery, making the topic as simple as possible. We will
present two methods to help explain bounded wildcards. You will understand this topic more
easily if you copy-and-paste the methods into a Java program and play with them as we
suggest, so that you see for yourself what happens.

We will be using classes Integer and Double, which are both subclasses of type Number.	
To the right is method m1. The type of parameter

p contains an upper-bounded wildcard:

 ? extends Number

This means that the corresponding argument of a
call on m1 can be an ArrayList whose elements are
of class Number or of any class that extends class Number, including Integer and Double.

Within the body of m1, when an element of ArrayList p is retrieved, it is viewed as a Number.

Copy method m1 into a Java class and note that it compiles. Now, uncomment the call p.add(…). This call is
syntactically incorrect; it does not compile; it violates the typing rules. This is good! Method m1 should not be al-
lowed to change p. For example, if the argument of a call is of type ArrayList<Double>, adding an Integer to p
would be a mistake.

SUMMARY. Use an upper-bounded wild card only when values are to be retrieved and processed and the data
structure (ArrayList) won't be changed.

To the right is method m2. The type of parameter p
contains a lower-bounded wildcard:

 ? super Integer

This means that the corresponding argument of a
call on m2 can be an ArrayList whose elements are of any class that is Integer or a superclass of Integer, including
Number and Object. But an element of the ArrayList is viewed as an Integer.

Within the body of m2, it’s OK to add Integer’s to ArrayList p because the possible types of the ArrayList ele-
ments are Integer and any superclass of Integer. For example, an Integer is a Number and also an Object.

Copy method m2 into a Java class and note that it compiles. Now uncomment the assignment to x. This assign-
ment is syntactically incorrect; it does not compile; it violates the typing rules. This is good! Method m2 should not
be allowed to retrieve values from the ArrayList because it views them all as of type Integer and they need not be
Integers. For example, if the argument of a call has type ArrayList<Number>, an element might be a Double, which
can’t be stored in an Integer variable.

SUMMARY. Use a lower-bounded wild card only when the data structure, in this case the ArrayList, is to be
changed, but not to process its elements.

Notes

1. In the upper-bounded wildcard of the form ? extends C , C can be a class or an interface. In this context, the
word extends is used for both classes and interfaces.

2. In the lower-bounded wildcard of the form ? super C , C can be a class or an interface. In this context, the word
super is used for both classes and interfaces.

3. You may hear the terminology in parameter for a parameter that provides data to be processed. An upper-
bounded wildcard can be used for this parameter. On the other hand, the terminology out parameter means a pa-
rameter that accepts data. A lower-bounded wildcard can be used for this parameter.

4. Don’t use wildcards in return types because that forces a user who is writing calls on the method to deal with
them.

public static void m1(ArrayList<? extends Number> p) {
 Number x= p.get(5);
 // p.add(new Integer(5));
}

public static void m2(ArrayList<? super Integer> p) {
 p.add(5);
 // Integer x= p.get(5);
}

Number

Integer Double

Object

