
Restrictions	on	generics	

1. Primitive types cannot be used generically. Pair<int, char> doesn’t work. That’s why Java has the wrapper classes 
and does automatic boxing an unboxing. 

2. A generic class cannot extend class Throwable. The following two declarations are syntactically incorrect. 

 class C<T>  extends Throwable { … } 
 class C<T>  extends Exception { … } 

3. A catch clause cannot catch an instance of a Type parameter. The following is syntactically incorrect: 

 public static <T extends Exception> void m(…) { 
     try { … } 
     catch (T e) { … } 
 } 

4. An instance of a type parameter cannot be created. The 
code to the right is syntactically incorrect. This is because of 
type erasure. Before compiling, all type parameters are re-
moved, so how can an instance of E be created? There are 
work-arounds for this, which we don’t go into. 

 

5. Arrays of parameterized types may not be created. The following expression is syntactically incorrect and won’t 
be compiled. 

 new ArrayList<Integer>[2]; 

You can write a statement as shown below, thus creating a raw ArrayList. You will get an “unchecked conversion” 
warning, which you can ignore, because that raw ArrayList is stored in a1, which is of type ArrayList<Integer>[]. 
That’s OK. 

 ArrayList<Integer>[] al= new ArrayList[2]; 

6. Static fields of type parameters are not allowed. Consider the class to the right 
and these two declaration/assignments: 

 Watch<Apple> iwatch= new Watch<>();  
 Watch<Samsung> swatch= new Watch<>(); 

Static field os is shared by iwatch and swatch. What is its type? It can’t be both Ap-
ple and Samsung. Therefore, static fields of type parameters are not allowed. 

7. The expression  ob instanceof T  is not allowed if T is a parameterized type. For example, 

 ob instanceOf Array<Integer> 

is syntactically incorrect. This is because of type erasure. Parameterized types are removed before a syntactically 
correct program is compiled. 

8. A method name cannot be overloaded if type erasure leads to the same raw type. Consider the two procedures 
declared below. Erase the parameterized type and they have the same signature. Therefore, this overloading is not 
allowed. 

 public void print(ArrayList<Integer> p) { … } 
 public void print(ArrayList<Double> p) { … } 

/** Create a new E and append it to b. */ 
public static <E> void append(ArrayList<E> b) { 
    E e= new E();  // compile-time error 
    b.add(e); 
} 

public class Watch<T> { 
    private static T os; 
    … 
} 


