
Generic	methods	

Function count, to the right, returns the number of times
item occurs in array b. It should work if b is an Integer array,
a Boolean array, a JFrame array —the type of the array ele-
ments shouldn’t matter. But the array elements and argument
item must have the same type.

This is accomplished by making count a generic function,
by placing type parameter T within “<>” just before the re-
turn type. <T> is a declaration of type parameter T, and T
then appears in three other places.

A call on count does not explicitly give a type argument
for T. Instead, T is inferred from the types of the arguments of the call. Here are two calls on count, each followed
by the value it returns:

 count(5, new Integer[]{5, 3, 5, 2}) 2
 count("b", new String[]{"bc", "b", "b", "b"}) 3

Creating a Pair with elements the same

Consider class Pair to the right. We write function twoOf(v)
to return a Pair that has v in both its elements. Thus,

 twoOf(v) and new Pair(v, v)

do the same thing.

The return type of twoOf(v) should be

 Pair<T, T>

where T is the type of v. Because T has to occur in at least two
places, this requires a generic method, which we write like this:

 /** Return a pair (v, v). */
 public static <T> Pair<T, T> twoOf(T v) {
 return new Pair<>(v, v);
 }

The occurrence of <T> before the return type (and after keyword
static) marks the function as generic, with type parameter T.

Again, a call does not explicitly give a type argument for T. Instead, T is inferred from the arguments of the call.
Below are two examples. Each call produces a Pair object; to the right of the call is what its toString function pro-
duces. The second call shows that twoOf(v) is most useful when the argument of a call is long —the argument has to
be written only once.

 twoOf(5) its toString produces "(5, 5)"
 twoOf(new Pair<>("this is not 6", 5)) its toString produces "((this is not 6, 5), (this is not 6, 5))"

A method with two type parameters

We write a static function to tell whether its two Pair parameters have equal first and second elements. Two type
parameters are needed, E is used for the first element and F for the second.

 /** Return true iff the fields of p1 equal the fields of p2. */
 public static <E, F> boolean equals(Pair<E, F> p1, Pair<E, F> p2) {
 return p1.first.equals(p2.first) && p1.second.equals(p2.second);
 }

/** An instance contains an ordered pair. */
public class Pair<E, F> {
 public E first; // First element
 public F second; // Second element

 /** Constructor: a null pair */
 public Pair() {}

 /** Constructor: a pair (e, f) */
 public Pair(E e, F f) {
 first= e;
 second= f;
 }

 /** return a representation of this pair. */
 public @Override String toString() {
 return "(" + first + ", " + second + ")";
 }
}	

/** Return the number of times item occurs in b.
 * Precondition: item is not null. */
public static <T> int count(T item, T[] b) {
 int n= 0;
 for (T e : b) {
 if (item.equals(e)) n= n+1;
 }
 return n;
}

