
Lower-bounded	type	parameters	

	

We give examples of generic lower-bounded type parameters.

Function add

Procedure add, to the right, adds the elements of int array b to ArrayList c.
One can use add, for example, to put initial values into an array list.

The type of the elements of ArrayList c is

 ? super Integer

which is one of Integer, Number, and Object. We could have used
simply ArrayList<Integer> for the type of c, but the use of the wild-
card lower-bounded type provides flexibility. Below is an example of
its use:

 ArrayList<Integer> al= new ArrayList<>();
 int[] ia= {1, 5, 6, 4};
 add(ia, al);

A more flexible function add

But why not make the procedure more flexible and have it work not
only for type Integer but for any class/type T? We rewrite add as a gener-
ic procedure, as shown to the right.

Since parameter array b is an in-parameter —its values are extracted
and used but the array is not changed— you might think you could write
the declaration of b as

 <? extends T>[] b

But this notation is not allowed for arrays, and it is in fact unnecessary. If T1 is a subclass/subtype of T, then T1[] is
a subtype of T[]. Consider the code below. For the call add(ia, al), type T of method add is inferred to be Number,
because argument al has type ArrayList<Number>. Thus, the type Integer[] of argument ia is cast upward to Num-
ber[]. This code prints the characters “[1, 5, 6, 4]”.

 ArrayList<Number> al= new ArrayList<>();
 Integer[] ia= {1, 5, 6, 4};
 add(ia, al);
 System.out.println(al);

Copy an ArrayList

This example shows the use of both an upper-bounded wildcard
and a lower-bounded wildcard.

Parameter src is an in-parameter: values are extracted and the
data structure is not changed. Therefore, the corresponding argu-
ment can be an ArrayList of any subclass of T.

Parameter dest is an out-parameter: the ArrayList is changed, but
its elements are not extracted and used. Therefore, the correspond-
ing argument can be an ArrayList of any superclass or superinterface of T.

Here is an example of a call on copy, using procedure add, above, to create an initial ArrayList.

 ArrayList<Integer> x1= new ArrayList<>();
 Integer[] xa= {1, 5, 6, 4};
 add(xa, x1);
 ArrayList<Object> x2= new ArrayList<>();
 copy(x1, x2);

/** Add elements of b to c*/
public static void add(int[] b,
 ArrayList<? super Integer> c) {
 for (int e : b) {
 c.add(e);
 }
}

/** Add elements of b to c*/
public static <T> void add(T[] b,
 ArrayList<? super T> c) {
 for (T e : b) {
 c.add(e);
 }
}

Number

Integer Double

Object

/** Copy src to dest. */
public static <T> void copy(
 ArrayList<? extends T> src,
 ArrayList<? super T> dest) {
 dest.clear();
 for (T e : src) dest.add(e);
}

Lower-bounded	type	parameters	

	

Finding the maximum value in an ArrayList

This example shows the contortions one can go
through to make a method as flexible as possible.

Generic function max returns the largest element in
its ArrayList parameter b. The obvious generic type
parameter to use is:

 (1) <T extends Comparable<T>>

Why? Class T has to implement interface Comparable
so that function compareTo is available.

Instead, however, the type parameter is

 (2) <T extends Comparable<? super T>>

We concoct an example to show that type parame-
ter (2) allows more calls than type parameter (1). Look
at classes Person and Student to the right. Note that
Student implements Comparable<Person>, not Compa-
rable<Student>. So, with variable as declared as

 ArrayList<Student> as

 the call

 max(as)

is syntactically incorrect if type parameter (1) is used
and syntactically correct if (2) is used.

We urge you to pop all this into a Java program and play with it.

The example given above seems far-fetched. Why didn’t class Person implement Comparable<Person> so that
class Student didn’t have to? Well, maybe someone else wrote class Person and it can’t be changed.

But class java.util.Collections contains several generic method that use notation (2) to provide utmost flexibility,
most notably, the following sort procedure. So it’s good to have seen and studied this use of notation (2).

 /** Sort li according to the order induced by c. */
 public static <T> void sort(List<T> li, Comparator<? super T> c)

/** Return the largest element in b.
 * Precondition: b contains at least one element. */
public static <T extends Comparable<? super T>>
 T max(ArrayList<T> b) {
 Iterator<T> it= b.iterator();
 T w= it.next();
 while (it.hasNext()) {
 T e= it.next();
 if (e.compareTo(w) > 0) w= e;
 }
 return w;
}

public class Person {
 public int age;
}

public class Student extends Person
 implements Comparable<Person> {
 public @Override int compareTo(Person p) {
 return age - p.age;
 }
}

