
for-loop	

	

We don’t describe the complete for-statement, or for-loop, as it is defined in Java, but just its most used form. 
The syntax of the for-loop is: 

 for (<initialization> ; <condition> ; <increment> ) <repetend> 

where 

1. The <initialization> is an assignment, like k= 0. It is executed at the beginning of the for-statement. 
2. The <condition> is a boolean expression. 
3. The increment is an assignment, like k= k+1  or  k= k-1. 
4. The <repetend1> is a statement — either a single statement or a <block> 

The following flow chart shows how the for-loop is executed. 

 

 

 

 

Here are two examples. 

(1) for (int k= 9; k >= 0; k= k-1)  // This loop prints the values 9, 8, 7, …, 0 
      System.out.println(k); 

(2) int k;     // This loop prints the values 0, 1, 2, …, 9 
 for (k= 0; k < 10; k= k+1) { 
      System.out.println(k); 

} 

Consider these points about for-loops. 

1. Each execution of the repetend is called an iteration. The first iteration is number 0, the second is number 1, and 
so on. 

2. Because k is declared in the <initialization> in for-loop (1), its scope is only the loop. Variable k cannot be used 
after the loop. It you want to reference k after the for-loop, declare k before the loop, as in (2). 

3. The <initialization> can be a sequence of assignments separate by commas, e.g. k= 1, i= 4, c= Color.RED 
The <initialization> can be missing —you can write for (; k < 5; k= k+1) … 

4. The <condition> can be missing, in which case it is an infinite loop. 

5. The increment can be a sequence of assignments, not just one. 

6. Consider for-loop (1) above. Variable k is called the counter of this loop. It is possible to change the counter of 
a loop in the repetend, but we strongly advise against this. A loop like (1) gives the impression that all the 
control bookkeeping is done in the first line —initialization, testing for termination, incrementing. Changing k 
in the repetend is disconcerting at best, ruining what the reader is expecting. Don’t do it. 

7. It is possible to use the break statement in the repetend. Its execution immediately terminates execution of the 
for-loop. We advise against this. Changing control using a break statement makes it harder to reason about the 
loop. If possible, restructure to avoid using it. 

8. Execution of a continue statement within the repetend terminates execution of the repetend, so that the 
<increment> is done next. 

9. Loops are best understood (and developed) using loop invariants. See the tutorials on program correctness and 
loop invariants that are associated with this list of definitions and concepts. 

																																																								
1 Repetend means the thing to be repeated. In the 1980’s, a 13-year old who was studying Gries’s book “The 
Science of Programming” used the term in an email. From then on, we have used that word. 
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