
do-loop	

	

The syntax of the do-statement, or do-loop, is:

 do <repetend> (<condition>) ;

where

1. The <condition> is a boolean expression.
2. The <repetend1> is a statement — either a single statement or a <block>

The following flow chart shows how the do-loop is executed.

The difference between a while-loop and a do-loop is that execution of a do-loop always executes at least one
iteration while a while-loop may not. The do-loop is rarely used.

Here’s an example. The do-loop prints the value 0 and terminates with i = -1. The while-loop prints nothing and
terminates with i = 0.

 int i= 0; int i= 0;
 do { while (i > 0) {
 System.out.println(i); System.out.println(i);
 i= i – 1; i= i – 1;
 } while (i > 0); }

1. It is possible to use the break statement in the repetend. Its execution immediately terminates execution of the
for-loop. We advise against this. Changing control using a break statement makes it harder to reason about the
loop. If possible, restructure to avoid using it.

2. Execution of a continue statement within the repetend terminates execution of the repetend, so that the
condition is evaluated next.

3. Loops are best understood (and developed) using loop invariants. See the tutorials on program correctness and
loop invariants that are associated with this list of definitions and concepts.

																																																								
1 Repetend means the thing to be repeated. In the 1980’s, a 13-year old who was studying Gries’s book “The
Science of Programming” used the term in an email. From then on, we have used that word.

<repetend> <condition>

false

true

