Type char

The values of primitive type char are characters. There are no operations on characters. Characters can be
written in several ways:

1. '$ A character within single quotes.

2. "u0061' Unicode representation (explained below). This is character 'a’

3. \n' An escape sequence within quotes. This is the new-line character.

4. (char)97 A cast from its internal decimal representation. This evaluates to 'a'.
Unicode

Unicode encodes the characters of almost all the world’s writing systems. Most characters are represented in 2
bytes (16 bits), but there are now so many characters that they don't all fit into the 16-bit format, and a few require
two-character escape sequences. Unicode is not a fixed format given from heaven but a standard developed by the
Unicode Consortium, a non-profit organization that works closely with other standards committees. It continues to
evolve. Have a look at its website: www.unicode.org/. Get to know the history of character representations.

In a representation like "u0061', following the \u is a 4-digit hexadecimal number giving the internal
representation of the character. Below are examples. The last five examples are Strings giving a greeting in the
world’s five most poplar languages.

"u0061' is 'a'

"uOOE4' is 'd'

"u03C3' is 'o'

"u0950' is '3%" Om, the sound of the universe (Sanskrit)

"\u4F60\us97D" Chinese R4, spoken as ni hao, meaning “a respectful hello”
"hola" Spanish word for “hello”

"hello" English word “hello”

"\u0928\u092E\u0938" Sanskrit word THH, or namaste, meaning “I bow to the divine in you”
"\u0627\u0644\u0633\u0644\u0627\u0645 \u063Nu0644\u064a\u0643\u0645"
Arabic words "aldosd! odisdz ", or as-salam alaykom, meaning “peace be upon you”

ASCII

ASCII stands for American Standard Code for Information Interchange. This 7-bit representation of the standard
latin letters and digits and some punctuation and control characters was developed in the 1960s. It was based on an
encoding used earlier in telegraph systems. Unicode uses the ASCII representation of the standard characters, with a
few modifications. A list of these ASCII characters is given at the end of this document, on the next page.

Escape sequences

The escape sequences start with the backslash letter \. They include a few control characters and the sequences
for a single quote, double quote, and the backslash itself. Here are the most frequently used ones.

\t' tab ‘n' new-line \r' carriage return
\" single quote \"' double quote "\' backslash
Casting to and from a character’s representation

Type char is a number type, and a character can be cast to its internal representation. For example,

The value of (char) 65 is 'A’
The value of (int) 'A’ is 65

If a character appears in an arithmetic operation, it is automatically cast to its int representation. For example,

'A'+ 1 evaluates to 66
(char) ('A'+ 1) evaluates to 'B'
'A'<'B' evaluates to true

'Z'+1-'A" evaluates to 26

Type char

The table below gives the ASCII and Unicode representation of digits, latin letters, punctuation, etc. The internal
representation of the digits 0..9 appear in order, as do those of the letters 'A'..'Z' and 'a'..'z'. These internal
representations can be used to process digits and letters in various ways. Here are examples.

Suppose character ¢ contains a digit. To get this digit as an integer, use the expression c - '0'. It is wise not to use
the expression c - 48 because people don’t remember that (char) 48 is 0.

The following loop prints all the lower-case latin letters:
for (char k="a'; k <="7'; k= (char)(k+1))
System.out.println(k);
Representation of “printable characters” —the old ASCII set

The table below contains mostly the original letters, digits, punctuation marks, and a few other symbols in the
original ASCII code. The table gives their internal number representation in binary, octal, decimal, and hexadecimal.
For the numbers ‘0°..”9’, letters ‘A’..Z’, and letters ‘a’..”z’, we show only the first and last since they follow in
order. These same internal representations are now used in Unicode.

Binary Oct | Dec | Hex | Char Binary Oct | Dec | Hex | Char
010 0000 | 040 | 32 20 space 0111100 | 074 | 60 3C [<
0100001 | 041 | 33 21 ! 0111101 | 075 | 61 3D | =
0100010 | 042 | 34 22) 0111110 | 076 | 62 3E | >
0100011 | 043 | 35 23 # 011 1111 | 077 | 63 3F |?
0100100 | 044 | 36 24 $ 100 0000 | 100 | 64 40 @
0100101 | 045 | 37 25 % 100 0001 | 101 | 65 41 A
0100110 | 046 | 38 26 &
0100111 | 047 | 39 27 ’ 101 1010 | 132 | 90 5A | Z
010 1000 | 050 | 40 28 (101 1011 | 133 | 91 5B | [
010 1001 | 051 | 41 29) 101 1100 | 134 | 92 5C |\
010 1010 | 052 | 42 2A | * 101 1101 | 135 | 93 5D |]
010 1011 | 053 | 43 2B | + 101 1110 | 136 | 94 SE_ [#
0101100 | 054 | 44 2C |, 101 1111 | 137 | 95 SF |
0101101 | 055 | 45 2D | - 110 0000 | 140 | 96 60 ‘
010 1110 | 056 | 46 2E | . 1100001 | 141 | 97 61 a
010 1111 | 057 | 47 2F |/
011 0000 | 060 | 48 30 0 1111010 | 172 | 122 |7A |z
011 0001 | 061 | 49 31 1 1111011 | 173 | 123 | 7B | {
1111100 | 174 | 124 | 7C ||
0111001 | 071 | 57 39 9 1111101 | 175 | 125 | 7D |}
011 1010 | 072 | 58 3A | : 1111110 | 176 | 126 | 7E | ~
0111011 | 073 | 59 3B |;

