
Type	char	

	

The values of primitive type char are characters. There are no operations on characters. Characters can be
written in several ways:

1. '$' A character within single quotes.
2. '\u0061' Unicode representation (explained below). This is character 'a'
3. '\n' An escape sequence within quotes. This is the new-line character.
4. (char) 97 A cast from its internal decimal representation. This evaluates to 'a'.

Unicode

Unicode encodes the characters of almost all the world’s writing systems. Most characters are represented in 2
bytes (16 bits), but there are now so many characters that they don't all fit into the 16-bit format, and a few require
two-character escape sequences. Unicode is not a fixed format given from heaven but a standard developed by the
Unicode Consortium, a non-profit organization that works closely with other standards committees. It continues to
evolve. Have a look at its website: www.unicode.org/. Get to know the history of character representations.

In a representation like '\u0061', following the \u is a 4-digit hexadecimal number giving the internal
representation of the character. Below are examples. The last five examples are Strings giving a greeting in the
world’s five most poplar languages.

 '\u0061' is 'a'
 '\u00E4' is 'ä'
 '\u03C3' is 'σ'
 '\u0950' is 'ॐ' Om, the sound of the universe (Sanskrit)

 "\u4F60\u597D" Chinese 你好, spoken as ni hao, meaning “a respectful hello”
 "hola" Spanish word for “hello”
 "hello" English word “hello”
 "\u0928\u092E\u0938" Sanskrit word नमस, or namaste, meaning “I bow to the divine in you”
 "\u0627\u0644\u0633\u0644\u0627\u0645 \u0639\u0644\u064a\u0643\u0645"
 Arabic words "عليكم السلام", or as-salam alaykom, meaning “peace be upon you”

ASCII

ASCII stands for American Standard Code for Information Interchange. This 7-bit representation of the standard
latin letters and digits and some punctuation and control characters was developed in the 1960s. It was based on an
encoding used earlier in telegraph systems. Unicode uses the ASCII representation of the standard characters, with a
few modifications. A list of these ASCII characters is given at the end of this document, on the next page.

Escape sequences

The escape sequences start with the backslash letter \. They include a few control characters and the sequences
for a single quote, double quote, and the backslash itself. Here are the most frequently used ones.

'\t' tab '\n' new-line '\r' carriage return
'\'' single quote '\"' double quote '\\' backslash

Casting to and from a character’s representation

Type char is a number type, and a character can be cast to its internal representation. For example,

 The value of (char) 65 is 'A'
 The value of (int) 'A' is 65

If a character appears in an arithmetic operation, it is automatically cast to its int representation. For example,

 'A' + 1 evaluates to 66
 (char) ('A' + 1) evaluates to 'B'
 'A' < 'B' evaluates to true
 'Z' +1 - 'A' evaluates to 26

Type	char	

	

The table below gives the ASCII and Unicode representation of digits, latin letters, punctuation, etc. The internal
representation of the digits 0..9 appear in order, as do those of the letters 'A'..'Z' and 'a'..'z'. These internal
representations can be used to process digits and letters in various ways. Here are examples.

Suppose character c contains a digit. To get this digit as an integer, use the expression c - '0'. It is wise not to use
the expression c - 48 because people don’t remember that (char) 48 is '0'.

The following loop prints all the lower-case latin letters:

 for (char k= 'a'; k <= 'z'; k= (char)(k+1))
 System.out.println(k);

Representation of “printable characters” –the old ASCII set

The table below contains mostly the original letters, digits, punctuation marks, and a few other symbols in the
original ASCII code. The table gives their internal number representation in binary, octal, decimal, and hexadecimal.
For the numbers ‘0’..’9’, letters ‘A’..’Z’, and letters ‘a’..’z’, we show only the first and last since they follow in
order. These same internal representations are now used in Unicode.

Binary Oct Dec Hex Char

011 1100 074 60 3C <

011 1101 075 61 3D =

011 1110 076 62 3E >

011 1111 077 63 3F ?

100 0000 100 64 40 @

100 0001 101 65 41 A

… … … …

101 1010 132 90 5A Z

101 1011 133 91 5B [

101 1100 134 92 5C \

101 1101 135 93 5D]

101 1110 136 94 5E ^

101 1111 137 95 5F _

110 0000 140 96 60 ‘

110 0001 141 97 61 a

… … … …

111 1010 172 122 7A z

111 1011 173 123 7B {

111 1100 174 124 7C |

111 1101 175 125 7D }

111 1110 176 126 7E ~

Binary Oct Dec Hex Char

010 0000 040 32 20 space

010 0001 041 33 21 !

010 0010 042 34 22 "

010 0011 043 35 23 #

010 0100 044 36 24 $

010 0101 045 37 25 %

010 0110 046 38 26 &

010 0111 047 39 27 ,

010 1000 050 40 28 (

010 1001 051 41 29)

010 1010 052 42 2A *

010 1011 053 43 2B +

010 1100 054 44 2C ,

010 1101 055 45 2D -

010 1110 056 46 2E .

010 1111 057 47 2F /

011 0000 060 48 30 0

011 0001 061 49 31 1

… … … … …

011 1001 071 57 39 9

011 1010 072 58 3A :

011 1011 073 59 3B ;

