
Type	boolean	

	

The values of primitive type boolean are true and false. The operators are:

 ! (meaning negation, of complement. !true is false and !false is true)

 && (and, or conjunction. b && c is true iff both b and c are true; otherwise it is false)

 || (or, or disjunction. b || c is true if b or c (or both) is true; otherwise it is false)

Operator precedences

Operator ! has highest precedence, then &&, and finally ||. There is no universal tradition for the relative
precedences of && and ||, and we recommend always using parentheses when they appear next to each other in an
expression, as in

 (x < 5 && y == 5) || z == 2

Short circuit evaluation

Operations b && c and b || c are evaluated left-to-right using short-circuit evaluation. That means that as soon as
the answer is known, evaluation stops. There are two cases to explain:

 false && c evaluation does not evaluate c; it simply yields the value false
 true || c evaluation does not evaluate c; it simply yields the value true

Short-circuit evaluation helps to shorten and simplify code. For example, the following expression is true iff j is
not 0 and k / j is most 50; division by 0 des not occur if j is 0:

 j != 0 && k / j <= 50

Expressions with boolean values

Relational expressions d == e, d != e, d < e, d <= e, d > e, and d >= e all evaluate to a boolean value —either
true or false— and can thus be used in boolean expressions.

Operators & and |

Operators & and | can also be used but we recommend against their use as boolean operations. They are bitwise
operations, and we do not discuss them. Short-circuit evaluation is not used for them.

Comparison with other languages

Some languages, e.g. C, use integers as booleans; 0 represents false and any other integer represents true. This
does not work in Java.

