
The	Call	Stack	
David	Gries	and	Scott	Wehrwein	

When a Java program is being executed (by you or a computer) a call stack is maintained. This call stack con-
tains a frame for each method call that has not been completed.

We show how to execute a method call using function p as an example.

Assume that a method is being executed and it contains the assignment z=
p(1+4). A frame for this method is at the top of the call stack —it contains local
variable z. The function call p(1+4) is to be carried out or evaluated.

Algorithm

We now state the algorithm for carrying out a general method call, using this
method p(1+4) call to illustrate.

1. Push a frame for the call onto the call stack.

2. Assign the values of the arguments of the call to the parameters.
 In this case, 5 is stored in parameter n.

3. Execute the method body, using the frame for the call to access
 parameters and local variables.
 We execute the assignment k= n+1. The value of the expression is 6, so
 we store 6 in n.
 Execution of the return statement ends execution of the body.
 The value 6 is to be returned.

4. Pop the frame for the call from the call stack. If this is a function call
 (and it is), push the value to be returned onto the call stack.

(Note that that value will be then be popped from the stack and used as the value of
the call.)

That’s it! Memorize this 4-step algorithm to execute a method call.

public static int p1(int n) {
 int k= n+1;
 return k;
}

... z= p(1+4); …

:
the call stack, just before
step 4 is to be executed

 5 n 6 k

 ra

 z ra

