
Catching	and	throwing	an	exception	further	

Earlier, we wrote function mod.

 /** = the value r that satisfies x = q*y + r and 0 <= r < abs(y) for some q.
 * Throw an ArithmeticException if y = 0. */
public static int mod(int x, int y) {
 if (y == 0) throw new ArithmeticException(“mod(x, 0) is undefined”);
 int r= x % Math.abs(y);
 return r >= 0 ? r : y + r;

 }

The main purpose of the explicit test for y = 0 was so that we could throw an exception with a particular detail
message. However, there is another way to get the same result. We remove the if-statement and place the whole
body in a try statement that catches ArithmeticExceptions. Then, in the catch-block, we throw a new exception with
our desired message.

 /** = the value r that satisfies x = q*y + r and 0 <= r < abs(y) for some q.
 * Throw an ArithmeticException if y = 0. */
public static int mod(int x, int y) {
 try {
 int r= x % Math.abs(y);
 return r >= 0 ? r : y + r;
 }
 catch (ArithmeticException ae) {
 throw new ArithmeticException((“mod(x, 0) is undefined”);
 }
}

The new method body does not rethrow object ae; it creates a new object and throws it. This is because it is not
possible to change the detail message of a throwable object.

But there are cases where rethrowing ae makes sense. For example, one might catch the exception only to dis-
pose of some resources —which is beyond the scope of CS2110— and then rethrow the same exception.

This second way of detecting that y is 0 is more in keeping with the exception-mechanism philosophy. Rather
than intersperse lots of tests for errors, which might double the size of the code, let the exception-handling facilities
do that work. Of course, in this case, this second way yields a longer program, but in general, using the exception-
handling facilities can help.

	

